Man pages for cbg-ethz/SubGroupSeparation
Inference in Bayesian Networks

add.observations-setadd further evidence to an existing list of observations of...
approxInferenceImportance Sampling (IS) in Bayesian Networks
AsiaAsia dataset
AsiamatAsiamat
belief.propagationperform belief propagation.
benchmarkMultipleNetsBenchmark Inference Methods
BN-classBN class definition.
BNDataset-classBNDataset class.
bn-methodget the 'BN' object contained in an 'InferenceEngine'.
bn-setset the original 'BN' object contained in an...
bootget selected element of bootstrap list.
bootsget list of bootstrap samples of a 'BNDataset'.
boots-setset list of bootstrap samples of a 'BNDataset'.
bootstrapPerform bootstrap.
build.junction.treebuild a JunctionTree.
completeSubset a 'BNDataset' to get only complete cases.
convertBNBestieToSGSBayesian network Conversion Bestie to SGS format
convertCPTsBestieToSGSCPTs Conversion Bestie to SGS format
cptsget the list of conditional probability tables of a 'BN'.
cpts-setset the list of conditional probability tables of a network.
dagget adjacency matrix of a network.
dag-setset adjacency matrix of an object.
dag.to.cpdagconvert a DAG to a CPDAG
data.fileget data file of a 'BNDataset'.
data.file-setset data file of a 'BNDataset'.
discretenessget status (discrete or continuous) of the variables of an...
discreteness-setset status (discrete or continuous) of the variables of an...
edge.dir.wpdagcounts the edges in a WPDAG with their directionality
emexpectation-maximization algorithm.
exactInferenceExact inference via SupGroupSeparation
get.allAncestorsGet relevant DAG nodes (ancestors)
get.allSubGroupsGet All Conditionally Independent Subgroups (CIS)
get.most.probable.valuescompute the most probable values to be observed.
get.subGroupGet Conditionally Independent Subgroup (CIS)
has.bootscheck whether a 'BNDataset' has bootstrap samples or not.
has.imputed.bootscheck whether a 'BNDataset' has bootstrap samples from...
has.imputed.datacheck if a BNDataset contains impited data.
has.raw.datacheck if a BNDataset contains raw data.
header.fileget header file of a 'BNDataset'.
header.file-setset header file of a 'BNDataset'.
imp.bootsget list of bootstrap samples from imputed data of a...
imp.boots-setset list of bootstrap samples from imputed data of a...
imputeImpute a 'BNDataset' raw data with missing values.
imputed.dataget imputed data of a BNDataset.
imputed.data-setadd imputed data.
InferenceEngine-classInferenceEngine class.
interventionsget the list of interventions of an 'InferenceEngine'.
interventions-setset the list of interventions for an 'InferenceEngine'.
jptsget the list of joint probability tables compiled by an...
jpts-setset the list of joint probability tables compiled by an...
jt.cliquesget the list of cliques of the junction tree of an...
jt.cliques-setset the list of cliques of the junction tree of an...
junction.treeget the junction tree of an 'InferenceEngine'.
junction.tree-setset the junction tree of an 'InferenceEngine'.
knn.imputePerform imputation of a data frame using k-NN.
layeringreturn the layering of the nodes.
learn_bnlearn_bn
learn.dynamic.networklearn a dynamic network (structure and parameters) of a BN...
learn.networklearn a network (structure and parameters) of a BN from a...
learn.paramslearn the parameters of a BN.
learn.structurelearn the structure of a network.
loopy_belief.propagationperform LOOPY belief propagation.
makeAllPlotsVisualize benchmark results
marginalscompute the list of inferred marginals of a BN.
nameget name of an object.
name-setset name of an object.
node.sizesget size of the variables of an object.
node.sizes-setset the size of variables of an object.
num.bootsget number of bootstrap samples of a 'BNDataset'.
num.boots-setset number of bootstrap samples of a 'BNDataset'.
num.itemsget number of items of a 'BNDataset'.
num.items-setset number of items of a 'BNDataset'.
num.nodesget number of nodes of an object.
num.nodes-setset number of nodes of an object.
num.time.stepsget number of time steps observed in a 'BN' or a 'BNDataset'.
num.time.steps-setset number of time steps of a 'BN' or a 'BNDataset'.
num.variablesget number of variables of a 'BNDataset'.
num.variables-setset number of variables of a 'BNDataset'.
observationsget the list of observations of an 'InferenceEngine'.
observations-setset the list of observations of an 'InferenceEngine'.
plotplot a 'BN' as a picture.
plot_bnplot_bn
plot_dagplot_dag
printprint a 'BN', 'BNDataset' or 'InferenceEngine' to 'stdout'.
quantilesget the list of quantiles of an object.
quantiles-setset the list of quantiles of an object.
randomBNCreate random Bayesian network
raw.dataget raw data of a BNDataset.
raw.data-setadd raw data.
read.bifRead a network from a '.bif' file.
read.datasetRead a dataset from file.
read.dscRead a network from a '.dsc' file.
read.netRead a network from a '.net' file.
sample.datasetsample a 'BNDataset' from a network of an inference engine.
sample.rowsample a row vector of values for a network.
sample.subGroupSamplingSub Group Sampling (SGS) in Bayesian Networks
scoring.funcRead the scoring function used to learn the structure of a...
scoring.func-setSet the scoring function used to learn the structure of a...
shdcompute the Structural Hamming Distance between two adjacency...
showShow method for objects.
struct.algoRead the algorithm used to learn the structure of a network.
struct.algo-setSet the algorithm used to learn the structure of a network.
sub_belief.propagationperform SUB belief propagation.
test.updated.bncheck if an updated 'BN' is present in an 'InferenceEngine'.
tune.knn.imputetune the parameter k of the knn algorithm used in imputation.
updated.bn-methodget the updated 'BN' object contained in an...
updated.bn-setset the updated 'BN' object contained in an...
variablesget variables of an object.
variables-setset variables of an object.
wpdagget the WPDAG of an object.
wpdag.from.dagInitialize a WPDAG from a DAG.
wpdag-setset WPDAG of the object.
write.dscWrite a network saving it in a '.dsc' file.
write_xgmmlWrite a network saving it in an 'XGMML' file.
cbg-ethz/SubGroupSeparation documentation built on Feb. 11, 2023, 8:29 p.m.