as_adjmat | graph to adjacency |
as.data.frame.dce | Dce to data frame |
create_random_DAG | Create random DAG (topologically ordered) |
dce-methods | Differential Causal Effects - main function |
dce_nb | Differential Causal Effects for negative binomial data |
df_pathway_statistics | Biological pathway information. |
estimate_latent_count | Estimate number of latent confounders Compute the true casual... |
g2dag | Graph to DAG |
get_pathway_info | Dataframe containing meta-information of pathways in database |
get_pathways | Easy pathway network access |
get_prediction_counts | Compute true positive/... counts |
graph2df | Graph to data frame |
graph_union | Graph union |
pcor | Partial correlation |
permutation_test | Permutation test for (partial) correlation on non-Gaussian... |
plot.dce | Plot dce object |
plot_network | Plot network adjacency matrix |
propagate_gene_edges | Remove non-gene nodes from pathway and reconnect nodes |
resample_edge_weights | Resample network edge weights |
rlm_dce | costum rlm function |
simulate_data-methods | Simulate data |
summary.rlm_dce | summary for rlm_dce |
topologically_ordering | Topological ordering |
trueEffects | Compute the true casual effects of a simulated dag |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.