Finite mixture models are a popular technique for modelling unobserved heterogeneity or to approximate general distribution functions in a semi-parametric way. They are used in a lot of different areas such as astronomy, biology, economics, marketing or medicine. This package is the implementation of popular robust mixture regression methods based on different algorithms including: fleximix, finite mixture models and latent class regression; CTLERob, component-wise adaptive trimming likelihood estimation; mixbi, bi-square estimation; mixL, Laplacian distribution; mixt, t-distribution; TLE, trimmed likelihood estimation. The implemented algorithms includes: CTLERob stands for Component-wise adaptive Trimming Likelihood Estimation based mixture regression; mixbi stands for mixture regression based on bi-square estimation; mixLstands for mixture regression based on Laplacian distribution; TLE stands for Trimmed Likelihood Estimation based mixture regression. For more detail of the algorithms, please refer to below references. Reference: Chun Yu, Weixin Yao, Kun Chen (2017) <doi:10.1002/cjs.11310>. NeyKov N, Filzmoser P, Dimova R et al. (2007) <doi:10.1016/j.csda.2006.12.024>. Bai X, Yao W. Boyer JE (2012) <doi:10.1016/j.csda.2012.01.016>. Wennan Chang, Xinyu Zhou, Yong Zang, Chi Zhang, Sha Cao (2020) <arXiv:2005.11599>.
Package details |
|
---|---|
Author | Sha Cao [aut, cph, ths], Wennan Chang [aut, cre], Chi Zhang [aut, ctb, ths] |
Maintainer | Wennan Chang <wnchang@iu.edu> |
License | GPL |
Version | 1.1.0 |
URL | https://changwn.github.io/RobMixReg/ |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.