duncanobrien/EWSmethods: Forecasting Tipping Points at the Community Level

Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the 'EWSmethods' website for more information, and tutorials.

Getting started

Package details

MaintainerDuncan O'Brien <duncan.a.obrien@gmail.com>
LicenseMIT + file LICENSE
Version1.3.2.9500
URL https://github.com/duncanobrien/EWSmethods https://duncanobrien.github.io/EWSmethods/
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("duncanobrien/EWSmethods")
duncanobrien/EWSmethods documentation built on Aug. 28, 2024, 4:25 a.m.