Man pages for enweg/quickbnnr
Quick way to implement Bayesian Neural Networks in R and estimating these using Julia's Turing

BDenseCreate a Dense layer that has a standard normal prior for...
BNNCreate the actual BNN model
BRNNAdds a Baysian RNN layer to the network
ChainCreate a network by chaining layers
clean_parametersClean parameters for better understanding
DenseForcePosFirstWeightCreate a layer that enforces positive weights in the first...
DenseOrderedBiasCreate a Dense layer with ordered biases
DenseOrderedWeightsCreate a dense layer with ordered first weight column
dot-summaryJust a helper function
dot-tensor_embedhelper function
estimateEstimating a BNN model using the NUTS default sampler in...
get_random_symbolCreates a random string that is used as variable in julia
make_netCreate a BNN based on a specification
ndimshelper function to determine dimensions of object
predict.quickbnnr.estimateUses posterior draws for prediction
quickbnnr_seedSets a seed for replication purposes
quickbnnr_setupSet up of the Julia environment needed for QuickBNN
summary.quickbnnr.estimateReturns summary statistics of an estimated model
tensor_embedMake a tensor of sequences
enweg/quickbnnr documentation built on April 15, 2022, 3:29 a.m.