gmgeorg/ForeCA: Forecastable Component Analysis

Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply 'ForeCA' to multivariate time series data. 'ForeCA' is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as 'PCA' or 'ICA', 'ForeCA' takes time dependency explicitly into account and searches for the most ''forecastable'' signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.

Getting started

Package details

Maintainer
LicenseGPL-2
Version0.2.7
URL https://github.com/gmgeorg/ForeCA
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("gmgeorg/ForeCA")
gmgeorg/ForeCA documentation built on July 5, 2020, 11:01 a.m.