Man pages for hrvg/RiverML
Machine Learning for River Science

BMR_resBenchmark results
CA_geologyGeological map of California
calibrated_predictionsCalibrate machine learning predictions
compute_benchmarkComputes the benchmark in parallel mode
compute_final_modelCompute the final models in sequential mode
compute_predictionsRetrieve the final (optimal) models
drops_streamcat_dfRemove some variables from 'streamcat_df'
fixVarNamesFixes variable names for data visualization purpose
fmt_labelsFormat the class labels
getAllBMRSGet all the benchmark result in a directory of directories
getBestBMRTuneGet the tuning results of the optimal models
getBestBMRTuningEntropyGet the tuning entropy corresponding to the optimal models
get_bestBMR_tuning_resultsRetrieve the value of the benchmark tuning results
get_bestFeatureSetsGet the optinmal feature sets
get_BMRRetrieve benchmark results
getBMR_perf_tuneSelecting elements from 'BMR_res' and cosmetic changes
getBMRTuningEntropyCompute the tuning entropy
get_calibrationsPerforms a posterior multinomial calibration of machine...
get_coordsRetrieve the coordinates of the observations
get_entropy_dfFormats entropy rate results
get_final_learnersGet the final learners from the benchmark tuning results
get_final_modelsRetrieve the final (optimal) models
getFreqBestFeatureSetsGet the frequency of selection of a given feature across all...
get_H_rastersRetrieve rasters of statistical roughness of topography
getHyperparNamesGet hyper-parameters names
get_innerGet the inner folds for the nested resampling
get_input_dataLoading input data
get_input_polygonsGet the polygons for a set of locations defined by...
get_learnersGet the learners
get_learners_internalInternal function to get the learners
get_outersGet the outer folds for the nested resampling
get_points_from_input_dataGet the SpatialPoint from input data
get_polGet a SpatialPolygons around a point
get_ppcGet the preprocessing
get_predictionsGet predictions
get_psGet the values for the hyper-parameter(s) set
get_smote_coordsProduces noisy coordinates for SMOTE data
get_smote_dataResolve the class imbalance using the SMOTE algorithm
get_stats_dfWrapper function to calculate terrain analysis statistics for...
get_streamcat_dfGet the StreamCat data
get_target_dataLoad target features
get_target_pointsExtracts mid-points from streamlines
get_target_streamcat_dfMatches 'streamcat_df' and 'target_streamlines' using 'COMID'
get_target_streamlinesLoad a SpatialLinesDataFrame containing values for valley...
get_terrain_metricsGet the terrain analysis metrics
get_training_dataLoad training features
getTunePlotPlot the distribution of hyper-parameters resulting from the...
HPC_optimComputes an optimized repartition of the HPC computing
join_streamlines_with_H_rastersExtract the values of all H_rasters along streamlines
makeAllFeatureImportancePlotFSCreate feature importance across all regions of study
makeAverageAccPlotMake average accuracy plot
makeAverageAUCPlotMake average AUC plot
makeBestTuneAUCPlotMake a violin plot comparing the results from the optimal...
makeExampleModelSelectionPlotMake an example plot of model selection
makeFeatureImportancePlotMakes a dot chart of feature importance
makeTotalTimetrainPlotMake training time plot
make_training_dataTransform training data from 'list' to 'data.frame'
makeTuningEntropyPlotCreate a plot of the evolution of tuning entropy with the...
makeWindowInfluencePlotVisualize the influence of window size on model selection
near_channel_statsDerive near-channel statistics: "median","mean", "min",...
normHCalculates entropy
preproc_dataProcess the data according to a 'preProcess' object
raster_statsDerive raster statistics: "median","mean", "min", "max",...
regional_benchmarkWrapper function to compute the benchmark
regional_characteristicsRegional characteristics
resolve_class_imbalanceResolve class imbalances using 'UBL' package
richnessCalculate the richness (number of different species)
sanitize_dataEnsures that non-finite values are flagged as 'NA'
savePARAMETERSSaves the benchmark parameters
SFE_all_data_dfTarget data for SFE region
shannon_weinerCalculates Shannon-Weiner entropy
simpson_evennessCalculate Simpson's evenness
snap_points_to_pointsSnaps points to points
target_streamlines_KTarget streamlines for the K region
target_streamlines_NCTarget streamlines for the NC region
target_streamlines_NCCTarget streamlines for the NCC region
target_streamlines_SACTarget streamlines for the SAC region
target_streamlines_SCTarget streamlines for the SC region
target_streamlines_SCCTarget streamlines for the SCC region
target_streamlines_SECATarget streamlines for the SECA region
target_streamlines_SFETarget streamlines for the SFE region
target_streamlines_SJTTarget streamlines for the SJT region
terrain_Modified 'terrain()' function
hrvg/RiverML documentation built on Oct. 12, 2020, 10:40 a.m.