BMR_res | Benchmark results |
CA_geology | Geological map of California |
calibrated_predictions | Calibrate machine learning predictions |
compute_benchmark | Computes the benchmark in parallel mode |
compute_final_model | Compute the final models in sequential mode |
compute_predictions | Retrieve the final (optimal) models |
drops_streamcat_df | Remove some variables from 'streamcat_df' |
fixVarNames | Fixes variable names for data visualization purpose |
fmt_labels | Format the class labels |
getAllBMRS | Get all the benchmark result in a directory of directories |
getBestBMRTune | Get the tuning results of the optimal models |
getBestBMRTuningEntropy | Get the tuning entropy corresponding to the optimal models |
get_bestBMR_tuning_results | Retrieve the value of the benchmark tuning results |
get_bestFeatureSets | Get the optinmal feature sets |
get_BMR | Retrieve benchmark results |
getBMR_perf_tune | Selecting elements from 'BMR_res' and cosmetic changes |
getBMRTuningEntropy | Compute the tuning entropy |
get_calibrations | Performs a posterior multinomial calibration of machine... |
get_coords | Retrieve the coordinates of the observations |
get_entropy_df | Formats entropy rate results |
get_final_learners | Get the final learners from the benchmark tuning results |
get_final_models | Retrieve the final (optimal) models |
getFreqBestFeatureSets | Get the frequency of selection of a given feature across all... |
get_H_rasters | Retrieve rasters of statistical roughness of topography |
getHyperparNames | Get hyper-parameters names |
get_inner | Get the inner folds for the nested resampling |
get_input_data | Loading input data |
get_input_polygons | Get the polygons for a set of locations defined by... |
get_learners | Get the learners |
get_learners_internal | Internal function to get the learners |
get_outers | Get the outer folds for the nested resampling |
get_points_from_input_data | Get the SpatialPoint from input data |
get_pol | Get a SpatialPolygons around a point |
get_ppc | Get the preprocessing |
get_predictions | Get predictions |
get_ps | Get the values for the hyper-parameter(s) set |
get_smote_coords | Produces noisy coordinates for SMOTE data |
get_smote_data | Resolve the class imbalance using the SMOTE algorithm |
get_stats_df | Wrapper function to calculate terrain analysis statistics for... |
get_streamcat_df | Get the StreamCat data |
get_target_data | Load target features |
get_target_points | Extracts mid-points from streamlines |
get_target_streamcat_df | Matches 'streamcat_df' and 'target_streamlines' using 'COMID' |
get_target_streamlines | Load a SpatialLinesDataFrame containing values for valley... |
get_terrain_metrics | Get the terrain analysis metrics |
get_training_data | Load training features |
getTunePlot | Plot the distribution of hyper-parameters resulting from the... |
HPC_optim | Computes an optimized repartition of the HPC computing |
join_streamlines_with_H_rasters | Extract the values of all H_rasters along streamlines |
makeAllFeatureImportancePlotFS | Create feature importance across all regions of study |
makeAverageAccPlot | Make average accuracy plot |
makeAverageAUCPlot | Make average AUC plot |
makeBestTuneAUCPlot | Make a violin plot comparing the results from the optimal... |
makeExampleModelSelectionPlot | Make an example plot of model selection |
makeFeatureImportancePlot | Makes a dot chart of feature importance |
makeTotalTimetrainPlot | Make training time plot |
make_training_data | Transform training data from 'list' to 'data.frame' |
makeTuningEntropyPlot | Create a plot of the evolution of tuning entropy with the... |
makeWindowInfluencePlot | Visualize the influence of window size on model selection |
near_channel_stats | Derive near-channel statistics: "median","mean", "min",... |
normH | Calculates entropy |
preproc_data | Process the data according to a 'preProcess' object |
raster_stats | Derive raster statistics: "median","mean", "min", "max",... |
regional_benchmark | Wrapper function to compute the benchmark |
regional_characteristics | Regional characteristics |
resolve_class_imbalance | Resolve class imbalances using 'UBL' package |
richness | Calculate the richness (number of different species) |
sanitize_data | Ensures that non-finite values are flagged as 'NA' |
savePARAMETERS | Saves the benchmark parameters |
SFE_all_data_df | Target data for SFE region |
shannon_weiner | Calculates Shannon-Weiner entropy |
simpson_evenness | Calculate Simpson's evenness |
snap_points_to_points | Snaps points to points |
target_streamlines_K | Target streamlines for the K region |
target_streamlines_NC | Target streamlines for the NC region |
target_streamlines_NCC | Target streamlines for the NCC region |
target_streamlines_SAC | Target streamlines for the SAC region |
target_streamlines_SC | Target streamlines for the SC region |
target_streamlines_SCC | Target streamlines for the SCC region |
target_streamlines_SECA | Target streamlines for the SECA region |
target_streamlines_SFE | Target streamlines for the SFE region |
target_streamlines_SJT | Target streamlines for the SJT region |
terrain_ | Modified 'terrain()' function |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.