Man pages for jackmwolf/tehtuner
Fit and Tune Models to Detect Treatment Effect Heterogeneity

get_mnppGet the MNPP for the Step 2 model
get_mnpp.classtreeGet the MNPP for a Classification Tree
get_mnpp.ctreeGet the MNPP for a Conditional Inference Tree
get_mnpp.lassoGet the MNPP for a Model fit via Lasso
get_mnpp.rtreeGet the MNPP for a Regression Tree
get_theta_nullPermute a dataset under the null hypothesis and get the MNPP
get_vt1Get the appropriate Step 1 estimation function associated...
get_vt2Get the appropriate Step 2 estimation function associated...
permuteGenerate a dataset with permuted treatment indicators
print.tunevtPrint an object of class tunevt
tehtuner_exampleSimulated example data
test_null_theta_ctreeTest if a Value Gives a Null Conditional Inference Tree
tune_thetaEstimate the penalty parameter for Step 2 of Virtual Twins
tunevtFit a tuned Virtual Twins model
validate_alpha0Check if alpha0 is a valid input to tunevt
validate_p_repsCheck if p_reps is a valid input to tunevt
validate_TrtCheck if Trt is a valid input to tunevt
validate_YCheck if Y is a valid input to tunevt
vt1_lassoEstimate the CATE Using the Lasso for Step 1 of Virtual Twins
vt1_marsEstimate the CATE Using MARS for Step 1 of Virtual Twins
vt1_rfEstimate the CATE Using a Random Forest for Step 1 of Virtual...
vt1_superEstimate the CATE Using Super Learner for Step 1 of Virtual...
vt2_classtreeEstimate the CATE using a classification tree for Step 2
vt2_ctreeEstimate the CATE using a conditional inference tree for Step...
vt2_lassoEstimate the CATE using the Lasso for Step 2
vt2_rtreeEstimate the CATE using a regression tree for Step 2
jackmwolf/tehtuner documentation built on June 10, 2025, 10:32 p.m.