Man pages for jbkunst/klassets
Tools to simulate data set to teach Statistical Models and ML Algorithms

fit_classification_random_forestFit classification random forest to 'klassets_response_xy'...
fit_classification_treeFit classification tree to 'klassets_response_xy' object
fit_hclustFit Hierarchical Clustering to 'klassets_cluster' object...
fit_kmeansFit K-means to 'klassets_cluster' object
fit_knnFit K Nearest Neighbours to 'klassets_response_xy' object
fit_linear_modelFit Linear model to 'klassets_xy' object
fit_linear_model_treeFit Linear Model tree to 'klassets_xy' object
fit_loessFit Local polynomial regression to 'klassets_xy' object
fit_logistic_regressionFit Logistic regression to 'klassets_response_xy' object
fit_marsFit Multivariate Adaptive Regression Splines to 'klassets_xy'...
fit_regression_random_forestFit regression random forest to 'klassets_xy' object
fit_regression_treeFit regression tree to 'klassets_xy' object
fit_statskmeansFit K-means to 'klassets_cluster' object using...
idyob10k10,000 observations of ID and year of birth
idyob1k1000 observations of ID and year of birth
kmeans_iterationsGenerate intermediate iterations when performing K-means
mnist_plot_digitsPlot some digits from train mnist data
mnist_testMNIST test data
mnist_trainMNIST train data
sim_groupsGenerate data sets to apply clustering algorithms
sim_quasianscombe_set_1Generate _quasi_ Anscombe data sets Type 1
sim_quasianscombe_set_2Generate _quasi_ Anscombe data sets Type 2: No linear...
sim_quasianscombe_set_3Generate _quasi_ Anscombe data sets Type 3: Extreme values...
sim_quasianscombe_set_4Generate _quasi_ Anscombe data sets Type 4: 2 Clusters
sim_quasianscombe_set_5Generate _quasi_ Anscombe data sets Type 5:...
sim_quasianscombe_set_6Generate _quasi_ Anscombe data sets Type 6: Simpson's Paradox
sim_response_xyGenerate data sets to apply binary classifiers
sim_xyGenerate data sets to apply regression methods
jbkunst/klassets documentation built on Dec. 7, 2022, 9:18 p.m.