Man pages for jdtrat/rlsims
Simulate Reinforcement Learning Agents in R

check_action_reinforcement_episodesCheck Action/Reinforcement Episodes
check_arm_inputCheck Arm Input
check_array_list_inputHave Input Checks for Setting Array Inputs
rl_action_simulateSimulate an RL Agent's Action
rl_action_simulate.epsilonGreedySimulate an Action with a 'Epsilon-Greedy' Choice Policy
rl_action_simulate.greedySimulate an Action with a 'Greedy' Choice Policy
rl_action_simulate.softmaxSimulate an Action with a 'Softmax' Choice Policy
rl_arms_get_outcomeGet Arm's Outcome based on its Probability and Reward...
rl_define_armsDefine the Arm Structure
rl_define_array_factoryFactory for Defining Array Setting Functions
rl_define_new_agentDefine a New RL Agent
rl_define_policyDefine the Action-Selection Policy for an RL Agent
rl_define_reinforcements_arrayDefine Reinforcements Array for Tracking Cues in RL Agent's...
rl_define_stimuli_arrayDefine Cue Array for Tracking Cues in RL Agent's Environment
rl_policy_check_internalCheck Action-Selection Policy
rl_set_policy_internalGenerate Policy List
use_agent_templateUse an RL Agent Template from rlsims Package
zerosCreate a zero matrix.
jdtrat/rlsims documentation built on March 26, 2022, 6:17 p.m.