banana_gibbsflow | Compute Gibbs flow for banana example |
banana_gradloglikelihood | Evaluate gradient of banana example loglikelihood function |
banana_gradlogprior | Evaluate gradient of banana example prior density |
banana_loglikelihood | Evaluate banana example loglikelihood function |
banana_logprior | Evaluate banana example prior density |
banana_partialderivative_loglikelihood | Evaluate partial derivative of banana example likelihood... |
banana_partialderivative_logprior | Evaluate partial derivative of banana example prior density |
banana_sampleprior | Sample from banana example prior distribution |
baseball_artificial_logprior | Evaluate variance components model artificial prior density... |
baseball_gibbsflow | Compute Gibbs flow for variance components model on baseball... |
baseball_gibbsvelocity | Compute Gibbs velocity for variance components model on... |
baseball_gradloglikelihood | Evaluate gradient of variance components loglikelihood on... |
baseball_gradlogprior | Evaluate gradient of variance components prior density on... |
baseball_gradlogprior_artificial | Evaluate gradient of variance components artificial prior... |
baseball_loglikelihood | Evaluate variance components model loglikelihood function on... |
baseball_logprior | Evaluate variance components model prior density on baseball... |
baseball_sample_artificial_prior | Sample from variance components model artificial prior... |
construct_kernel | Constructs MCMC kernel |
coxprocess_gibbsflow | Compute Gibbs flow for Cox process model |
coxprocess_gibbsflow_ep_proposal | Compute Gibbs flow for Cox process model with EP Gaussian... |
coxprocess_gibbsflow_vi_proposal | Compute Gibbs flow for Cox process model with VI Gaussian... |
coxprocess_gibbsvelocity | Compute Gibbs velocity for Cox process model |
coxprocess_gibbsvelocity_ep_proposal | Compute Gibbs velocity for Cox process model with EP Gaussian... |
coxprocess_gibbsvelocity_vi_proposal | Compute Gibbs velocity for Cox process model with VI Gaussian... |
coxprocess_gradlog_ep_proposal | Evaluate gradient of EP Gaussian proposal density |
coxprocess_gradloglikelihood | Evaluate gradient of Cox process loglikelihood function |
coxprocess_gradlogprior | Evaluate gradient of multivariate Gaussian prior density |
coxprocess_gradlog_vi_proposal | Evaluate gradient of VI Gaussian proposal density |
coxprocess_log_ep_proposal | Evaluate EP Gaussian proposal density |
coxprocess_log_ep_proposal_conditional | Evaluate conditional density of EP Gaussian proposal |
coxprocess_loglikelihood | Evaluate Cox process loglikelihood function |
coxprocess_loglikelihood_term | Evaluate a particular term of Cox process loglikelihood... |
coxprocess_logprior | Evaluate multivariate Gaussian prior density |
coxprocess_logprior_conditional | Evaluate conditional density of multivariate Gaussian prior |
coxprocess_log_vi_proposal | Evaluate VI Gaussian proposal density |
coxprocess_partialderivative_log_ep_proposal | Evaluate partial derivative of EP Gaussian proposal density |
coxprocess_partialderivative_loglikelihood | Evaluate partial derivative of Cox process likelihood... |
coxprocess_partialderivative_logprior | Evaluate partial derivative of multivariate Gaussian prior... |
coxprocess_partialderivative_log_vi_proposal | Evaluate partial derivative of VI Gaussian proposal density |
coxprocess_sample_ep_proposal | Sample from EP Gaussian proposal distribution |
coxprocess_sampleprior | Sample from multivariate Gaussian prior distribution |
coxprocess_sample_vi_proposal | Sample from VI Gaussian proposal distribution |
coxprocess_stein_variational_importance_sampling | Perform Stein variational importance sampling |
gaussian_gibbsflow | Compute Gibbs flow for Gaussian model |
gaussian_gibbsvelocity | Compute Gibbs velocity for Gaussian model |
gaussian_gradloglikelihood | Evaluate gradient of multivariate Gaussian loglikelihood... |
gaussian_gradlogprior | Evaluate gradient of multivariate Gaussian prior density |
gaussian_loglikelihood | Evaluate multivariate Gaussian loglikelihood function |
gaussian_log_normconst | Compute log normalizing constant of multivariate Gaussian... |
gaussian_logposterior | Evaluate multivariate Gaussian posterior density |
gaussian_logprior | Evaluate multivariate Gaussian prior density |
gaussian_partialderivative_loglikelihood | Evaluate partial derivative of multivariate Gaussian... |
gaussian_partialderivative_logprior | Evaluate partial derivative of multivariate Gaussian prior... |
gaussian_posterior_cov | Compute posterior covariance of multivariate Gaussian example |
gaussian_posterior_mean | Compute posterior mean of multivariate Gaussian example |
gaussian_sampleprior | Sample from multivariate Gaussian prior distribution |
gaussian_stein_variational_importance_sampling | Perform Stein variational importance sampling |
get_hmc_kernel | Construct Hamiltonian Monte Carlo kernel |
get_mala_kernel | Construct Metropolis adjusted Langevin algorithm kernel |
get_rm_hmc_kernel | Construct Riemann manifold Hamiltonian Monte Carlo kernel for... |
get_rwmh_kernel | Construct random walk Metropolis-Hastings kernel |
GibbsFlow | GibbsFlow package |
gradmvnpdf | Evaluate gradient of multivariate Gaussian prior density |
mixtureexample_gibbsflow | Compute Gibbs flow for mixture example |
mixtureexample_gibbsvelocity | Compute Gibbs flow for mixture example |
mixtureexample_gradloglikelihood | Evaluate gradient of mixture example loglikelihood function |
mixtureexample_gradlogprior | Evaluate gradient of mixture example prior density |
mixtureexample_loglikelihood | Evaluate mixture example loglikelihood function |
mixtureexample_log_normconst | Compute log normalizing constant of mixture example |
mixtureexample_logposterior | Evaluate mixture example posterior density |
mixtureexample_logprior | Evaluate mixture example prior density |
mixtureexample_partialderivative_loglikelihood | Evaluate partial derivative of mixture example likelihood... |
mixtureexample_partialderivative_logprior | Evaluate partial derivative of mixture example prior density |
mixtureexample_posterior_cov | Compute posterior covariance of mixture example |
mixtureexample_posterior_mean | Compute posterior mean of mixture example |
mixtureexample_sampleprior | Sample from mixture example prior distribution |
mixturemodel_gibbsflow | Compute Gibbs flow for mixture model |
mixturemodel_gibbsvelocity | Compute Gibbs flow for mixture model |
mixturemodel_gradloglikelihood | Evaluate gradient of mixture model loglikelihood function |
mixturemodel_gradlogprior | Evaluate gradient of mixture model prior density |
mixturemodel_loglikelihood | Evaluate mixture model loglikelihood function |
mixturemodel_logprior | Evaluate mixture model prior density |
mixturemodel_partialderivative_loglikelihood | Evaluate partial derivative of mixture model likelihood... |
mixturemodel_partialderivative_logprior | Evaluate partial derivative of mixture model prior density |
mixturemodel_sampleprior | Sample from mixture model prior distribution |
mvn_cholesky_factor | Compute Cholesky factor |
mvnpdf | Evaluate multivariate Gaussian density |
mvnpdf_chol | Evaluate multivariate Gaussian density (with pre-computed... |
mvnrnd | Simulate from multivariate Gaussian distribution |
mvnrnd_chol | Simulate from multivariate Gaussian distribution (with... |
rcpparma_hello_world | Set of functions in example RcppArmadillo package |
run_ais | Run annealed importance sampler |
run_gibbsflow_ais | Run Gibbs flow annealed importance sampler |
run_gibbsflow_sis | Run Gibbs flow sequential importance sampler |
run_gibbsflow_sisr | Run Gibbs flow importance sampler with resampling |
run_gibbsflow_smc | Run Gibbs flow sequential Monte Carlo sampler |
run_smc | Run sequential Monte Carlo sampler |
systematic_resampling | Perform systematic resampling |
varcomp_artificial_logprior | Evaluate variance components model artificial prior density... |
varcomp_gibbsflow | Compute Gibbs flow for variance components model on simulated... |
varcomp_gibbsvelocity | Compute Gibbs velocity for variance components model on... |
varcomp_gradloglikelihood | Evaluate gradient of variance components loglikelihood on... |
varcomp_gradlogprior | Evaluate gradient of variance components prior density on... |
varcomp_gradlogprior_artificial | Evaluate gradient of variance components artificial prior... |
varcomp_loglikelihood | Evaluate variance components model loglikelihood function on... |
varcomp_logprior | Evaluate variance components model prior density on simulated... |
varcomp_sample_artificial_prior | Sample from variance components model artificial prior... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.