all_shape_dists | Return all shapes and distances for each zone |
arg_check_dist_ellipse | Check argments if dist.ellipse |
bn.test | Besag-Newell Test |
bn.zones | Determine case windows (circles) |
cepp.sim | Perform 'cepp.test' on simulated data |
cepp.test | Cluster Evalation Permutation Procedure Test |
cepp.weights | Compute region weights for 'cepp.test' |
clusters | Extract clusters |
color.clusters | Color clusters |
combine.zones | Combine distinct zones |
csg | Construct connected subgraphs |
dc.sim | Perform 'dc.test' on simulated data |
dc.test | Double Connection spatial scan test |
dc.zones | Determine zones for the Double Connected scan test |
dist.ellipse | Compute minor axis distance of ellipse |
distinct | Distinct elements of a list |
dmst.sim | Perform 'dmst.test' on simulated data |
dmst.test | Dynamic Minimum Spanning Tree spatial scan test |
dmst.zones | Determine zones for the Dynamic Minimum Spanning Tree scan... |
edmst.sim | Perform 'edmst.test' on simulated data |
edmst.test | Early Stopping Dynamic Minimum Spanning Tree spatial scan... |
edmst.zones | Determine zones for the early stopping dynamic Minimum... |
elbow_point | Compute Elbow Point |
elliptic.nn | Nearest neighbors for elliptic scan |
elliptic.penalty | Compute elliptic penalty |
elliptic.sim | Perform 'elliptic.test' on simulated data |
elliptic.sim.adj | Perform 'elliptic.test' on simulated data |
elliptic.test | Elliptical Spatial Scan Test |
elliptic.zones | Determine zones for 'elliptic.test' |
fast.sim | Perform 'fast.test' on simulated data |
fast.test | Fast Subset Scan Test |
fast.zones | Determine sequence of fast subset scan zones |
flex.sim | Perform 'flex.test' on simualated data |
flex_test | Flexibly-shaped Spatial Scan Test |
flex.test | Flexibly-shaped Spatial Scan Test |
flex_zones | Determine zones for flexibly shaped spatial scan test |
flex.zones | Determine zones for flexibly shaped spatial scan test |
gedist | Compute distance for geographic coordinates |
knn | K nearest neighbors |
lget | Apply getElement over a list |
logical2zones | Convert logical vector to zone |
mc.pvalue | Compute Monte Carlo p-value |
mlf.test | Maxima Likelihood First Scan Test |
mlf.zones | Determine zones for the maxima likelihood first algorithm. |
mlink.sim | Perform 'mlink.test' on simulated data |
mlink.test | Maximum Linkage spatial scan test |
mlink.zones | Determine zones for the Maximum Linkage scan test |
morancr.sim | Constant-risk Moran's I statistic |
morancr.stat | Constant-risk Moran's I statistic |
morancr.test | Constant-risk Moran's I-based test |
mst.all | Minimum spanning tree for all regions |
mst.seq | Minimum spanning tree sequence |
nclusters | Number of clusters |
neast | Breast cancer mortality in the Northeastern United States |
neastw | Binary adjacency matrix for 'neast' |
nn2zones | Convert nearest neighbors list to zones |
nn.cumsum | Cumulative sum over nearest neighbors |
nndist | Determine nearest neighbors based on maximum distance |
nndup | Determine duplicates in nearest neighbor list |
noc_enn | Returned ordered non-overlapping clusters |
noc_nn | Returned ordered non-overlapping clusters |
noz | Determine non-overlapping zones |
nydf | Leukemia data for 281 regions in New York. |
nypoly | 'SpatialPolygons' object for New York leukemia data. |
nysf | 'sf' object for New York leukemia data. |
nysp | 'SpatialPolygonsDataFrame' for New York leukemia data. |
nyw | Adjacency matrix for New York leukemia data. |
optimal_ubpop | Optimal Population Upper Bound Statistics |
plot.smerc_cluster | Plot object of class 'smerc_cluster'. |
plot.smerc_optimal_ubpop | Plot object of class 'smerc_optimal_ubpop'. |
plot.tango | Plots an object of class 'tango'. |
precog.sim | Perform 'precog.test' on simulated data. |
precog.test | PreCoG Scan Test |
prep.mst | Return nicely formatted results from mst.all |
print.smerc_cluster | Print object of class 'smerc_cluster'. |
print.smerc_optimal_ubpop | Print object of class 'smerc_optimal_ubpop'. |
print.smerc_similarity_test | Print object of class 'smerc_similarity_test'. |
print.tango | Print object of class 'tango'. |
rflex.midp | Compute middle p-value |
rflex.sim | Perform 'rflex.test' on simualated data |
rflex.test | Restricted Flexibly-shaped Spatial Scan Test |
rflex_zones | Determine zones for flexibly shaped spatial scan test |
rflex.zones | Determine zones for flexibly shaped spatial scan test |
scan.nn | Determine nearest neighbors with population constraint |
scan.sim | Perform 'scan.test' on simulated data |
scan.sim.adj | Perform 'scan.test' on simulated data |
scan_stat | Spatial scan statistic |
scan.stat | Spatial scan statistic |
scan.test | Spatial Scan Test |
scan.zones | Determine zones for the spatial scan test |
seq_scan_sim | Perform scan test on simulated data sequentially |
seq_scan_test | Sequential Scan Test |
sig_noc | Return most significant, non-overlapping zones |
sig_prune | Prune significant, non-overlapping zones |
smerc | smerc |
smerc_cluster | Prepare 'smerc_cluster' |
stat.poisson.adj | Compute Poisson test statistic |
summary.smerc_cluster | Summary of 'smerc_cluster' object |
tango.stat | Tango's statistic |
tango.test | Tango's clustering detection test |
tango.weights | Distance-based weights for 'tango.test' |
uls.sim | Perform 'uls.test' on simulated data |
uls.test | Upper Level Set Spatial Scan Test |
uls.zones | Determine sequence of ULS zones. |
w2segments | Returns segments connecting neighbors |
zones.sum | Sum over zones |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.