Man pages for jiho/joml
Utilities for Machine Learning

classification_metricsCompute classification quality metrics
classification_reportBuild a classification report
confusion_matrixBuild a confusion matrix
defactorConvert a factor into integers using 0-based indexing
fit_one_xgbFit an xgboost model to _one_ 'resamples' object
importanceCompute variable importance for each resample
majority_voteReturn the majority vote in a discrete valued vector
param_gridDefine a parameter grid, to be explored through the fitting...
partialsCompute univariate partial dependence for each resample
permuteCreate permutations of resamples
plot.cmPlot a confusion matrix
plot_importancePlot variable importance
plot_partialsPlot partial dependence plots
refactorConvert a vector of 0-based indexed integers into a factor
regression_metricsCompute regression quality metrics
replicateReplicate each row of a resamples object
resample_bootGenerate data resamples using bootstrap
resample_cvGenerate data resamples using cross validation
resample_identityGenerate repeated resamples of the same data
resample_splitGenerate train-val splits of the data
seCompute the standard error of the mean, assuming a normal...
split_in_foldsSplit n items into k folds
summarise_importanceSummarise variable importance across resamples
summarise_partialsSummarise partial dependence across resamples
xgb_fitFit an xgboost model for each row of a 'resamples' object
xgb_predictPredict from an xgboost model at a given number of rounds,...
xgb_summarise_fitSummarise the fit of xgboost models over resamples
jiho/joml documentation built on Dec. 6, 2023, 5:50 a.m.