classCenter | Prototypes of groups. |
combine | Combine Ensembles of Trees |
conditionalPred | Evaluates interaction importance using conditional prediction |
getTree | Extract a single tree from a forest. |
gRIT | Generalized random intersection trees |
grow | Add trees to an ensemble |
grow.randomForest | Grow random forest |
importance | Extract variable importance measure |
importance.randomForest | Importance method for random forest |
imports85 | The Automobile Data |
interactPredict | Predict interaction |
iRF | Iterative random forests (iRF) |
margin | Margins of randomForest Classifier |
margin.randomForest | Random forest margin |
na.roughfix | Rough Imputation of Missing Values |
na.roughfix.data.frame | NA rough fix data frame |
na.roughfix.default | NA rough fix default |
outlier | Compute outlying measures |
outlier.default | Default outlier |
outlier.randomForest | Random forest outlier |
permImportance | Evaluates interaction importance thhrough permutation |
plotInt | Plot interaction |
plot.margin | Plot margin |
plot.randomForest | Plot method for randomForest objects |
predict.randomForest | predict method for random forest objects |
print.randomForest | Print random forest |
randomForest | Classification and Regression with Random Forest |
randomForest.default | Random forest default function |
randomForest.formula | Random forest formula |
readForest | Read forest |
rfcv | Random Forest Cross-Valdidation for feature selection |
rfImpute | Missing Value Imputations by randomForest |
rfImpute.default | Random forest impute default |
rfImpute.formula | Random forest impute formula |
rfNews | Show the NEWS file |
RIT | Random Intersection Trees |
stabilityScore | Stability score |
treesize | Size of trees in an ensemble |
tuneRF | Tune randomForest for the optimal mtry parameter |
varImpPlot | Variable Importance Plot |
varUsed | Variables used in a random forest |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.