Man pages for kshirley/LDAtools
Tools to fit a topic model using Latent Dirichlet Allocation (LDA)

bigram.tableCompute table of bigrams
collapse.bigramsReplace specified bigrams with terms representing the bigrams
entEntropy
fitLDAFit LDA model via Gibbs sampler
flag.exactFlag the documents that exactly match a pre-specified list of...
flag.partialFlag the documents that contain an occurrence of one or more...
getProbsCompute topic-word and document-topic probability...
jsvizCreate a list of required objects from fitted topic model to...
KLCompute symmetric version of Kullback-Leibler (KL) divergence...
luCompute the number of unique elements in a vector
normalizeNormalize
perplexity.boundsCompute the lower bound of the perplexity of a topic model...
plotLoglikTraceplot of log-likelihood.
plotTokensPlot probable tokens for a given topic
predictLDAEstimate topics for new documents using a Gibbs sampler
preprocessPreprocess raw documents according to various options
preprocess.newdocsPreprocess raw version of new documents based on previously...
remap.termsThis function replaces instances of specified terms with...
suSort the unique elements in a vector
token.rankCompute distinctiveness and saliency of the words in the...
topdocsFind representative documents for each topic
kshirley/LDAtools documentation built on May 20, 2019, 7:03 p.m.