Man pages for linulysses/mcfda
Mean and Covariance Estimation for Functional Data Analysis

bw.lp1Dselect bandwidth for one-dimensional local linear smoother
cov.basisCovariance estimation by basis expansion
covfuncEstimate the cov function from functional data/snippets.
cov.pacePACE approach to covariance estimation
cv.partitionthe function mimic the cvpartition in MATLAB
deriv.fourierEvaluate derivatives of Fourier basis functions on a grid
estimate.deltaestimate the window width of snippets
estimate.thetaEstimate the parameters of the correlation structure
evaluate.basisEvaluate orthonormal basis functions on a grid
lp1Done-dimensional local polynomial smoother
meanfuncEstimate the mean function from functional data/snippets
plot.meanfuncplot the estimated mean function
predict.covfuncpredict cov functions at new locations
predict.meanfuncpredict mean functions at new locations
regular.gridgenerate a regular grid on a domain
rep.colreplicate a column vector into a matrix
rep.rowreplicate a row vector into a matrix
sigma2estimate the variance of noise
varfuncEstimate the variance function
linulysses/mcfda documentation built on Jan. 17, 2021, 8:53 a.m.