Perform a Relative Weights Analysis (RWA) (a.k.a. Key Drivers Analysis) as per the method described in Tonidandel & LeBreton (2015) <DOI:10.1007/s10869-014-9351-z>, with its original roots in Johnson (2000) <DOI:10.1207/S15327906MBR3501_1>. In essence, RWA decomposes the total variance predicted in a regression model into weights that accurately reflect the proportional contribution of the predictor variables, which addresses the issue of multi-collinearity. In typical scenarios, RWA returns similar results to Shapley regression, but with a significant advantage on computational performance.
Package details |
|
---|---|
Author | Martin Chan <martinchan53@gmail.com> |
Maintainer | Martin Chan <martinchan53@gmail.com> |
License | GPL-3 |
Version | 0.0.3 |
URL | https://github.com/martinctc/rwa |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.