cfx | Color ramp functions |
colorize | Colorize numerical values |
colorize.heat | Colorize numerical values for the heat palette |
create.ionet | Create interactive omics network objects |
create.ionets | Create a list of interactive omics network objects |
ggempty | An empty ggplot |
ggeplot | Enrichment plot implemented in ggplot |
ggwrs | Weighted rank scores plot implement in ggplot |
ig | centrality |
ig.assortivity | Graph-level assortivity |
ig.betweeness | Node-level betweeness centrality |
ig.centrality | Functions for calculating node-level centrality measures |
ig.clustering | Graph-level clustering |
ig.components | Graph-level components |
ig.create | Helper function for creating graph objects |
ig.dangalchev | Node-level dangalchev closeness centrality |
ig.degree | Node-level degree centrality |
ig.density | Graph-level density |
ig.diameter | Graph-level diameter |
ig.diffusion | Node-level diffusion centrality |
ig.eccentricity | Node-level eccentricity centrality |
ig.edges | Graph-level edge count |
ig.efficiency | Graph-level efficiency |
ig.eigen | Node-level eigenvector centrality |
ig.isolated | Graph-level isolated |
ig.katz | Node-level katz centrality |
ig.laplacian | Node-level laplacian centrality |
ig.leverage | Node-level leverage centrality |
ig.nodes | Graph-level vertex count |
ig.properties | Functions for calculating graph-level properties |
ig.rwr | Random walk with restart |
ig.stress | Node-level stress centrality |
ig.topoco | Node-level topological coefficient centrality |
ig.to.vn | Convert ig to vn |
ig.transitivity | Graph-level transitivity |
interactive.omics.network | Interaction Omics Network Object |
is.ionet | Check if object is an interactive omics network objects |
is.network | Checks if object is a interactive omics network object |
is.networks | Checks if object is a list of interactive omics network... |
kstest | Two-sided Kolmogorov–Smirnov test |
network.kstest | Centrality-based enrichment |
network.pca.contri | PCA - Contibutors |
network.pca.hclust | PCA - Hierarchical Clustering |
network.pca.pltvar | PCA - Show Contributors |
network.pca.varexp | PCA - Variance Explained |
networks.cdistr | Centrality distributions |
networks.diffc | Differential Centrality Rankings Across Networks |
networks.hclust | Hierarchical Clustering of Networks by Centrality |
networks.tnodes | Important Nodes |
normalize.nlog | Normalize significance values |
normalize.nlog.range | Normalize significance values between a given range |
normalize.range | Normalize values between a given range |
normalize.zo | Normalize values between zero and one |
pseudo.log.trans | Pseudo-log transformation |
pseudo.log.trans.rev | Pseudo-log transformation in reverse |
rcolors | Repeatable vector of distinct colors |
run.shiny | Spin up an instance of the shiny application |
theme_simplex | An ggplot theme for simplex applications |
vn.to.ig | Convert vn to ig |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.