Man pages for opoyc/autoforecast
Forecast Development Kit

accuracy_metricAccuracy metrics
clean_tsTime Series Cleansing
feature_engineering_tsAutomatic Time Series Feature Engineering
fit_arimaFit Auto Regressive Integrated Moving Average Model
fit_crostonFit Croston model
fit_etsFit Error Trend Seasonal model
fit_gamFit Generalized Additive Model
fit_glmFit a Generalized Linear Model
fit_glmnetFit a Regularized Generalize Linear Model
fit_tsFitting models for time-series data
get_default_hyperparDefault hyperparameter list by time series model
get_default_optim_confDefault optimization configuration
get_graph_statGenerate graphics for time series insights
get_hyperpar_sampleHyperparameter sample generator
get_insight_dataGet GAM features
get_oc_dataGet Operational Cycle data
get_seas_meCalculate Marginal Seasonal Effects
get_time_weightsGenerate time weights
get_trend_decayGenerate trend discounts
import_dataImporting data from local and shared sources
impute_tsTime series imputation
lag_featuresAutoregressive or lags features
log_updateLogger updater
long_to_wideLong to wide regressor column
ma_featuresMoving Average feature engineering
make_reg_matrixGenerate regression matrix for regression based models
mod_stat_dataInternal modification of statistical data
optim_intTime series optimization internal function
optim_tsHigh order optimization function
plot_tsPlot time series forecast
prescribe_tsData prescription
rdata2objRData 2 Object
react_gam_parInternal GAM parameter
reverse_scopeReverse scope
seasonal_featuresGenerate trend and seasonal components for regression based...
split_tsAutomatic Time Series Cross-Validation split
update_parameterUpdating parameters given a grid.
validate_tsValidate Time Series Data
winsorize_tsWinsorize imputation
opoyc/autoforecast documentation built on May 18, 2021, 1:29 a.m.