pdwaggoner/hdImpute: A Batch Process for High Dimensional Imputation

A correlation-based batch process for fast, accurate imputation for high dimensional missing data problems via chained random forests. See Waggoner (2023) <doi:10.1007/s00180-023-01325-9> for more on 'hdImpute', Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597> for more on 'missForest', and Mayer (2022) <https://github.com/mayer79/missRanger> for more on 'missRanger'.

Getting started

Package details

MaintainerPhilip Waggoner <philip.waggoner@gmail.com>
LicenseMIT + file LICENSE
Version0.2.1
URL https://github.com/pdwaggoner/hdImpute
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("pdwaggoner/hdImpute")
pdwaggoner/hdImpute documentation built on Sept. 2, 2024, 6:41 a.m.