Man pages for qdercon/pstpipeline
Probabilistic Selection Task (PST) pipeline: parsing, analysis, simulation, and plotting

check_learning_modelsDiagnostic plots and fit metrics for training and test data...
cmdstan_glmBayesian generalized linear models via CmdStan
compare_block_diffsCompare learning parameters between groups over different...
example_dataExample probabilistic selection task data
fit_learning_modelGeneral function to run Bayesian models using cmdstanr
generate_posterior_quantitiesGenerate posterior quantities following MCMC
get_affect_ppcExtract posterior predictions from affect data models and...
get_preds_by_chainGet and store posterior predictions for training data
import_multipleJATOS text file parsing function (multiple results)
import_singleJATOS text file parsing function (single result)
make_par_dfConstruct a tibble containing individual-level parameter...
parameter_glmQuantify and plot associations between learning parameters...
plot_affectPlot an individual's mean posterior predictions compared to...
plot_factorsVarious plots for factor prediction and derivation
plot_glmPlot associations between Q-learning model parameters and...
plot_importPlot raw experiment data
plot_ppcPlot posterior predictions against observed data
plot_raincloudRaincloud plots
plot_recoveryPlots to check parameter recovery
quantile_hdiCompute quantiles of a probability distrbution based on...
simulate_QLSimulate data from single and dual learning rate Q-learning...
take_subsampleHelper function to take a subsample of our parsed list (for...
qdercon/pstpipeline documentation built on June 1, 2025, 1:11 p.m.