Man pages for ryan-heslin/RegLesson
Linear Regression from Scratch

box_coxCompare the Box-Cox Transformation at Different Levels of...
breusch_paganConduct the Breusch-Pagan Test of Heteroscedascity
brown_forsytheConduct the Brown-Forsythe Test of Equal Variances on...
calibrateEstimate Observations of X from a Given 'Y'
centerCenter a Vector or Matrix
ciCompute the Bounds of a Confidence Interval
confint_betasCompute Confidence Intervals for Estimated Coefficients
confint_EY_hCompute Confidence Intervals for Regression Estimates
correlate_transformConduct the Correlation Transformation
default_colnamesAssign Generic Column Names to an Object
do_problemsSolve Problems Given a Linear Model
expected_normalFind the Expected Values of Residuals Assuming Normality
extra_SSConduct the Generalized F Test
get_default_argsGet a Function's Default Arguments
lack_of_fitConduct the F Test for Lack of Fit
LinRegProblemCreate a New 'LinRegProblem' Object
mseCompute the Mean Squared Error
new_LinRegProblemConstruct a LinRegProblem Instance
pseudoinverseFind the Pseudoinverse of a Matrix
p_valueCompute Two-sided p-Values under the Normal Distribution
regression_relationConduct the F Test for Existence of a Regression Relation
selfname_listName a List's Elements After Itself
simple_fitFit a Linear Model
simple_olsConduct Simple Linear Regression
SSRDecompDecompose Sums of Squares within a Linear Model
sstoCompute the Total Sum of Squares
substitute_callSubstitute Values from an Environment into a Call
sum_squareCompute the Sum of Squares
update.LinRegProblemUpdate a 'LinRegProblem' Object with a New Formula
Working_HotelingCompute Working-Hoteling Confidence Bands
ryan-heslin/RegLesson documentation built on Aug. 5, 2022, 9:03 p.m.