The threshold-free cluster enhancement (TFCE) approach integrates cluster information into voxel-wise statistical inference to enhance detectability of neuroimaging signal. Despite the significantly increased sensitivity, the application of TFCE is limited by several factors: (i) generalization to data structures, like brain network connectivity data is not trivial, (ii) TFCE values are in an arbitrary unit, therefore, P-values can only be obtained by a computationally demanding permutation-test. Here, we introduce a probabilistic approach for TFCE (pTFCE), that gives a simple general framework for topology-based belief boosting. The core of pTFCE is a conditional probability, calculated based on Bayes' rule, from the probability of voxel intensity and the threshold-wise likelihood function of the measured cluster size. We provide an estimation of these distributions based on Gaussian Random Field (GRF) theory. The conditional probabilities are then aggregated across cluster-forming thresholds by a novel incremental aggregation method. Our approach is validated on simulated and real fMRI data. pTFCE is shown to be more robust to various ground truth shapes and provides a stricter control over cluster "leaking" than TFCE and, in the most realistic cases, further improves its sensitivity. Correction for multiple comparison can be trivially performed on the enhanced P-values, without the need for permutation testing, thus pTFCE is well-suitable for the improvement of statistical inference in any neuroimaging workflow.
Package details |
|
---|---|
Maintainer | |
License | GPL (>= 3) + file LICENSE |
Version | 0.2.2.1 |
URL | http://github.com/spisakt/pTFCE |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.