ds.bm.defineLayer | Define training parameters for one RBM layer in a DBM or DBN |
ds.bm.definePartitionedLayer | Define parameters for training a partitioned RBM layer in a... |
ds.bm.exactloglikelihood | Exact calculation of the log-likelihood of a Boltzmann... |
ds.bm.samples | Generate samples from a Boltzmann machine model |
ds.dbm.exactloglikelihood | Exact calculation of the log-likelihood of a DBM |
ds.dbm.loglikelihood | Likelihood estimation for a DBM model |
ds.dbm.logproblowerbound | Estimation of the variational lower bound of the log... |
ds.dbm.samples | Generate samples from a deep Boltzmann machine |
ds.dbm.top2LatentDims | Two-dimensional representation of latent features |
ds.monitored_fitdbm | Fits a (multimodal) DBM model |
ds.monitored_fitrbm | Fit an RBM model |
ds.monitored_stackrbms | Train a stack of RBMs |
ds.monitored_traindbm | Fine-Tuning of a DBM |
ds.rbm.exactloglikelihood | Exact calculation of the log-likelihood of an RBM |
ds.rbm.loglikelihood | Likelihood estimation for an RBM model |
ds.rbm.samples | Generate samples from a restricted Boltzmann machine |
ds.setJuliaSeed | Set a random seed in Julia |
ds.splitdata | Split samples of a data set |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.