stephenslab/fastTopics: Fast Algorithms for Fitting Topic Models and Non-Negative Matrix Factorizations to Count Data

Implements fast, scalable optimization algorithms for fitting topic models ("grade of membership" models) and non-negative matrix factorizations to count data. The methods exploit the special relationship between the multinomial topic model (also, "probabilistic latent semantic indexing") and Poisson non-negative matrix factorization. The package provides tools to compare, annotate and visualize model fits, including functions to efficiently create "structure plots" and identify key features in topics. The 'fastTopics' package is a successor to the 'CountClust' package. For more information, see <doi:10.48550/arXiv.2105.13440> and <doi:10.1186/s13059-023-03067-9>. Please also see the GitHub repository for additional vignettes not included in the package on CRAN.

Getting started

Package details

Maintainer
LicenseBSD_2_clause + file LICENSE
Version0.7-24
URL https://stephenslab.github.io/fastTopics/ https://github.com/stephenslab/fastTopics
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("stephenslab/fastTopics")
stephenslab/fastTopics documentation built on March 29, 2025, 3:24 p.m.