Man pages for tkolisnik/Rf2pval
A comprehensive approach to genomic analysis using scikit-learn's Random Forest models and rank-based feature reduction in R

calculate_feature_importancesCalculate True and Permuted Feature Importances
calculate_full_set_pvalueCalculate Proportion-Based P-Value for Entire Feature Set
calculate_quantilesCalculate Quantiles of Feature Importance
calculate_ranked_based_pvaluesCalculate p-values for Each Feature Rank
calculate_SHAP_valuesCalculate SHAP Values and Identify Significant Features
create_feature_matrixDataset Preparation Function for Scikit-Learn Random forest...
demo_rnaseq_dataDemo RNA-seq Dataset
fit_and_evaluate_rfFit and Evaluate Random Forest Model
generate_fi_rank_plotGenerate Feature Importance Score-Rank Plot
generate_pi_ECDF_plotGenerate ECDF Plot
generate_pi_histogramGenerate pi Histogram Plot
generate_shap_plotsGenerate SHAP Plots
Rf2pval-packageRf2pval: A comprehensive approach to genomic analysis using...
setup_python_pkgsCentralized Setup for Python Environment
tune_and_train_rf_modelPerform hyperparameter tuning and training for...
tkolisnik/Rf2pval documentation built on Feb. 20, 2024, 5:39 a.m.