| activation | Activation functions between network layers | 
| adjust_deg_free | Parameters to adjust effective degrees of freedom | 
| all_neighbors | Parameter to determine which neighbors to use | 
| bart-param | Parameters for BART models These parameters are used for... | 
| c5_parameters | Parameters for possible engine parameters for C5.0 | 
| class_weights | Parameters for class weights for imbalanced problems | 
| conditional_min_criterion | Parameters for possible engine parameters for partykit models | 
| cost | Support vector machine parameters | 
| cubist_parameters | Parameters for possible engine parameters for Cubist | 
| deg_free | Degrees of freedom (integer) | 
| degree | Parameters for exponents | 
| dials-package | dials: Tools for working with tuning parameters | 
| dist_power | Minkowski distance parameter | 
| dropout | Neural network parameters | 
| earth_parameters | Parameters for possible engine parameters for earth models | 
| encode_unit | Class for converting parameter values back and forth to the... | 
| finalize | Functions to finalize data-specific parameter ranges | 
| freq_cut | Near-zero variance parameters | 
| grid_regular | Create grids of tuning parameters | 
| grid_space_filling | Space-filling parameter grids | 
| harmonic_frequency | Harmonic Frequency | 
| initial_umap | Initialization method for UMAP | 
| Laplace | Laplace correction parameter | 
| learn_rate | Learning rate | 
| lightgbm_parameters | Possible engine parameters for lightbgm | 
| max_times | Word frequencies for removal | 
| max_tokens | Maximum number of retained tokens | 
| min_dist | Parameter for the effective minimum distance between embedded... | 
| min_unique | Number of unique values for pre-processing | 
| mixture | Mixture of penalization terms | 
| momentum | Gradient descent momentum parameter | 
| mtry | Number of randomly sampled predictors | 
| mtry_prop | Proportion of Randomly Selected Predictors | 
| neighbors | Number of neighbors | 
| new-param | Tools for creating new parameter objects | 
| num_breaks | Number of cut-points for binning | 
| num_clusters | Number of Clusters | 
| num_comp | Number of new features | 
| num_knots | Number of knots (integer) | 
| num_runs | Number of Computation Runs | 
| num_tokens | Parameter to determine number of tokens in ngram | 
| over_ratio | Parameters for class-imbalance sampling | 
| parameters | Information on tuning parameters within an object | 
| parameters_constr | Construct a new parameter set object | 
| penalty | Amount of regularization/penalization | 
| predictor_prop | Proportion of predictors | 
| prior_slab_dispersion | Bayesian PCA parameters | 
| prune_method | MARS pruning methods | 
| pull_dials_object | Return a dials parameter object associated with parameters | 
| randomForest_parameters | Parameters for possible engine parameters for randomForest | 
| ranger_parameters | Parameters for possible engine parameters for ranger | 
| range_validate | Tools for working with parameter ranges | 
| rbf_sigma | Kernel parameters | 
| reexports | Objects exported from other packages | 
| regularization_method | Estimation methods for regularized models | 
| scheduler-param | Parameters for neural network learning rate schedulers These... | 
| select_features | Parameter to enable feature selection | 
| shrinkage_correlation | Parameters for possible engine parameters for sda models | 
| smoothness | Kernel Smoothness | 
| stop_iter | Early stopping parameter | 
| summary_stat | Rolling summary statistic for moving windows | 
| surv_dist | Parametric distributions for censored data | 
| survival_link | Survival Model Link Function | 
| target_weight | Amount of supervision parameter | 
| texthash | Text hashing parameters | 
| threshold | General thresholding parameter | 
| token | Token types | 
| trees | Parameter functions related to tree- and rule-based models. | 
| trim_amount | Amount of Trimming | 
| type_sum.param | Succinct summary of parameter objects | 
| unknown | Placeholder for unknown parameter values | 
| update.parameters | Update a single parameter in a parameter set | 
| validation_set_prop | Proportion of data used for validation | 
| value_validate | Tools for working with parameter values | 
| vocabulary_size | Number of tokens in vocabulary | 
| weight | Parameter for '"double normalization"' when creating token... | 
| weight_func | Kernel functions for distance weighting | 
| weight_scheme | Term frequency weighting methods | 
| window_size | Parameter for the moving window size | 
| xgboost_parameters | Parameters for possible engine parameters for xgboost | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.