add_features | Add features |
add_placeholders | Add empty placeholders |
add_timesteps | Add timesteps |
check_backtesting_iter | Check backtesting iteration number |
check_backtesting_opt | Check backtesting options |
check_colnames | Drop punctuations in colnames |
check_data_dir | Check the filepath where forecasts can be saved |
check_data_sv_as_xts | Check the time series data and convert to xts |
check_fc_horizon | Check forecasting horizon |
check_model_names | Check model names |
check_models_args | Check models' arguments |
check_nb_cores | Check the number of selected CPU cores |
check_period_iter | Check the period identifier |
check_preprocess_fct | Check the custom preprocessing function |
check_tensorflow | Check if tensorflow is properly installed |
check_time_id | Check the time identifier |
check_tmp_test_set_size | Check optional test set size |
check_valid_set_size | Check validation set size |
collapse_model_par | Store model estimates as a string |
combine_fc_results | Combine forecasting info |
default_prepro_fct | Default preprocessing function |
extract_coef_arima | Extract model estimates for ARIMA |
extract_coef_ets | Extract model estimates for ETS |
extract_coef_nnetar | Extract model estimates for NNETAR |
extract_coef_snaive | Extract model estimates for seasonal naive |
extract_coef_stl | Extract model estimates for STL |
extract_coef_tbats | Extract model estimates for TBATS |
format_historical_data | Format original data |
generate_fc | Forecasting Engine API |
generate_fc_arima | ARIMA Model |
generate_fc_automl_h2o | Automated Machine Learning |
generate_fc_bsts | Bayesian Structural Time Series Model |
generate_fc_ets | Exponential Smoothing Model |
generate_fc_lstm_keras | Long-Short Term Memory Network |
generate_fc_nnetar | Neural Network |
generate_fc_snaive | Seasonal Naive Model |
generate_fc_stl | Season-Trend Decomposition with Loess Model |
generate_fc_tbats | TBATS Model |
get_fc_with_PI | Extract forecasts and prediction intervals from list |
get_split_keys | Get split keys |
ini_model_output | Initialize the model output |
nb_diffs | Determine the number of differencing to obtain a stationary... |
normalize_data | Normalize the data |
preprocess_custom_fct | Customized preprocessing function |
print_model_name | Print to console the model name currently selected |
read_fc_from_file | Read results from files |
read_tsForecastR | Recursive function to read results from tsForecastR object |
reshape_X | Reshape regressors X |
reshape_Y | Reshape target variable y |
save_as_df | Read forecasts from tsForecastR object |
save_fc_bsts | Save forecasts (for bsts.prediction objects) |
save_fc_forecast | Save forecasts (for forecast objects) |
save_fc_ml | Save forecasts (for Machine Learning models) |
split_train_test_set | Split the data into a training, validation and test set |
transform_data | Apply a transformation on the data |
univariate_xts | Extract a univariate xts object from a mutivariate 'xts'... |
valid_md_arima | Check ARIMA model validity |
valid_md_autml_h2o | Check AutoML-h2o model validity |
valid_md_bsts | Check BSTS model validity |
valid_md_ets | Check ETS model validity |
valid_md_lstm_keras | Check LSTM-keras model validity |
valid_md_nnetar | Check Neural Net model validity |
valid_md_snaive | Check seasonal-naive model validity |
valid_md_stl | Check STL model validity |
valid_md_tbats | Check TBATS model validity |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.