The 'agghoo' procedure is an alternative to usual cross-validation. Instead of choosing the best model trained on V subsamples, it determines a winner model for each subsample, and then aggregate the V outputs. For the details, see "Aggregated hold-out" by Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (2021) <arXiv:1909.04890> published in Journal of Machine Learning Research 22(20):1--55.
Package details |
|
---|---|
Author | Sylvain Arlot <sylvain.arlot@universite-paris-saclay.fr> [cph,ctb], Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre,cph], Melina Gallopin <melina.gallopin@universite-paris-saclay.fr> [cph,ctb], Matthieu Lerasle <matthieu.lerasle@universite-paris-saclay.fr> [cph,ctb], Guillaume Maillard <guillaume.maillard@uni.lu> [cph,ctb] |
Maintainer | Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> |
License | MIT + file LICENSE |
Version | 0.1-0 |
URL | https://git.auder.net/?p=agghoo.git |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.