yagu0/agghoo: Aggregated Hold-Out Cross Validation

The 'agghoo' procedure is an alternative to usual cross-validation. Instead of choosing the best model trained on V subsamples, it determines a winner model for each subsample, and then aggregate the V outputs. For the details, see "Aggregated hold-out" by Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (2021) <arXiv:1909.04890> published in Journal of Machine Learning Research 22(20):1--55.

Getting started

Package details

AuthorSylvain Arlot <sylvain.arlot@universite-paris-saclay.fr> [cph,ctb], Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre,cph], Melina Gallopin <melina.gallopin@universite-paris-saclay.fr> [cph,ctb], Matthieu Lerasle <matthieu.lerasle@universite-paris-saclay.fr> [cph,ctb], Guillaume Maillard <guillaume.maillard@uni.lu> [cph,ctb]
MaintainerBenjamin Auder <benjamin.auder@universite-paris-saclay.fr>
LicenseMIT + file LICENSE
Version0.1-0
URL https://git.auder.net/?p=agghoo.git
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("yagu0/agghoo")
yagu0/agghoo documentation built on April 27, 2023, 10:27 p.m.