Man pages for yujijun/neoantigenML
Machine Learning Methods for Neoantigen Filtering

BenchmarkEvaTitle Benchmark calculation In particular unique combination...
CorBetweenTitle
CorPlotTitle
Feature_CalcualtionFragment feature calculation
FeatureSebyAutoTitle Automating the Feature Selection and benchmark...
FeatureSeByFilterTitle
FeatureSebyNestedresamTitle
FeatureSebyVariImpFilTitle Feature Selection by Embedded Filter Methods
FeatureWrapperMethodTitle Feature Selection by Wrapper Methods Use this function...
Neodatasetformated neoantigens dataset for machine learning running
neoML.allTitle glmnet/kknn/range/svm/xgboost training model
neoML.rpartTitle Classify by classif.rpart
PepFeatureDescTitle peptide Feature Description
PepFeatureDesc.mutateTitle peptide Feature Description
PepFragCreate fragment of peptide set
PepFragSignTitle PepFraSign
pepFragVisTitle visualization for fragment of peptides
peptidespositive and negative neopeptides from netMHCpan
pepVisLengthVisualization of length statistics in peptides.
PerformanceEvaTitle Performance evaluation of single machine learning...
PointbiserialTitle
PropertyofPepSingleTitle Properties of whole peptides
yujijun/neoantigenML documentation built on March 20, 2022, 11:59 p.m.