cace.meta.c | R Documentation |
This function performs the Bayesian hierarchical model method for meta-analysis when the dataset has complete compliance information for all studies, as described in Section 2.2, "the Bayesian hierarchical model", of the package manuscript.
cace.meta.c( data, param = c("CACE", "u1out", "v1out", "s1out", "b1out", "pic", "pin", "pia"), random.effects = list(), re.values = list(), model.code = "", digits = 3, n.adapt = 1000, n.iter = 1e+05, n.burnin = floor(n.iter/2), n.chains = 3, n.thin = max(1, floor((n.iter - n.burnin)/1e+05)), conv.diag = FALSE, mcmc.samples = FALSE, study.specific = FALSE )
data |
an input dataset with the same structure as the example data |
param |
a character string vector indicating the parameters to be tracked and estimated.
By default the following parameters (see |
random.effects |
a list of logical values indicating whether random effects are included in the model.
The list should contain the assignment for these parameters only: |
re.values |
a list of parameter values for the random effects. It should contain the assignment for these
parameters only: |
model.code |
a string representation of the model code; each line should be separated. Default to constructing
model code using the |
digits |
number of digits. Default to |
n.adapt |
adapt value. Default to |
n.iter |
number of iterations. Default to |
n.burnin |
number of burn-in iterations. Default to |
n.chains |
number of chains. Default to |
n.thin |
thinning rate, must be a positive integer. Default to |
conv.diag |
whether or not to show convergence diagnostics. Default to |
mcmc.samples |
whether to include JAGS samples in the final output. Default to |
study.specific |
a logical value indicating whether to calculate the study-specific
θ^{\mathrm{CACE}}_i. If |
It returns a model object whose attribute type is cace.Bayes
zhou2019bayesianBayesCACE
\insertReflunn2012bugsBayesCACE
\insertRefzeger1988modelsBayesCACE
cace.study
, cace.meta.ic
data("epidural_c", package = "BayesCACE") set.seed(123) out.meta.c <- cace.meta.c(data = epidural_c, conv.diag = TRUE, mcmc.samples = TRUE, study.specific = TRUE) # By calling the object smry from the output list out.meta.c, posterior estimates # (posterior mean, standard deviation, posterior median, 95\% credible interval, and # time-series standard error) are displayed. out.meta.c$smry out.meta.c$DIC
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.