| bmem | R Documentation | 
Mediation analysis based on bootstrap
bmem(data, model, v, method='list', ci='perc', cl=.95, 
     boot=1000, m=10, varphi=.1, st='i', robust=FALSE, 
     max_it=500, parallel=FALSE, ncore=1,  ...)
| data | A data set | 
| model | RAM path for the mediaiton model | 
| v | Indices of variables used in the mediation model. If omitted, all variables are used. | 
| method | 
 | 
| ci | 
 | 
| cl | Confidence level. Can be a vector. | 
| boot | Number of bootstraps | 
| m | Number of imputations | 
| varphi | Percent of data to be downweighted in robust method | 
| st | Starting values | 
| robust | Whether to use roubst method | 
| max_it | Maximum number of iterations in EM | 
| parallel | Whether to use parallel method to calculate. | 
| ncore | Number of cores for parallel method. | 
| ... | Other options for  | 
The indirect effect can be specified using equations such as a*b, a*b+c, and a*b*c+d*e+f, which can be defined in 'model' parameter. 
The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.
Zhiyong Zhang, Shuigen Ming and Lijuan Wang
Zhang, Z., & Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154-184. doi: 10.1007/s11336-012-9301-5
Yuan, KH., Zhang, Z. Robust Structural Equation Modeling with Missing Data and Auxiliary Variables. Psychometrika 77, 803-826 (2012). doi: 10.1007/s11336-012-9282-4
data("PoliticalDemocracy")
model_l <- '
ind60 =~ x1 + g*x2 + h*x3
dem60 =~ y1 + d*y2 + e*y3 + f*y4
dem65 =~ y5 + d*y6 + e*y7 + f*y8
dem60 ~ a * ind60
dem65 ~ c * ind60 + b * dem60
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
ind := a*b
'
fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method='list', 
      ci='perc', boot=50, parallel = TRUE, ncore = 8)
summary(fit_l)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.