candisc | R Documentation |
candisc
performs a generalized canonical discriminant analysis for
one term in a multivariate linear model (i.e., an mlm
object),
computing canonical scores and vectors. It represents a transformation of
the original variables into a canonical space of maximal differences for the
term, controlling for other model terms.
candisc(mod, ...)
## S3 method for class 'mlm'
candisc(mod, term, type = "2", manova, ndim = rank, ...)
## S3 method for class 'candisc'
print(x, digits = max(getOption("digits") - 2, 3), LRtests = TRUE, ...)
## S3 method for class 'candisc'
summary(
object,
means = TRUE,
scores = FALSE,
coef = c("std"),
ndim,
digits = max(getOption("digits") - 2, 4),
...
)
## S3 method for class 'candisc'
coef(object, type = c("std", "raw", "structure"), ...)
## S3 method for class 'candisc'
plot(
x,
which = 1:2,
conf = 0.95,
col,
pch,
scale,
asp = 1,
var.col = "blue",
var.lwd = par("lwd"),
var.labels,
var.cex = 1,
var.pos,
rev.axes = c(FALSE, FALSE),
ellipse = FALSE,
ellipse.prob = 0.68,
fill.alpha = 0.1,
prefix = "Can",
suffix = TRUE,
titles.1d = c("Canonical scores", "Structure"),
points.1d = FALSE,
...
)
mod |
An mlm object, such as computed by |
... |
arguments to be passed down. In particular, |
term |
the name of one term from |
type |
type of test for the model |
manova |
the |
ndim |
Number of dimensions to store in (or retrieve from, for the
|
digits |
significant digits to print. |
LRtests |
logical; should likelihood ratio tests for the canonical dimensions be printed? |
object , x |
A candisc object |
means |
Logical value used to determine if canonical means are printed |
scores |
Logical value used to determine if canonical scores are printed |
coef |
Type of coefficients printed by the summary method. Any one or
more of |
which |
A vector of one or two integers, selecting the canonical
dimension(s) to plot. If the canonical structure for a |
conf |
Confidence coefficient for the confidence circles around
canonical means plotted in the |
col |
A vector of the unique colors to be used for the levels of the
term in the |
pch |
A vector of the unique point symbols to be used for the levels of
the term in the |
scale |
Scale factor for the variable vectors in canonical space. If not specified, a scale factor is calculated to make the variable vectors approximately fill the plot space. |
asp |
Aspect ratio for the |
var.col |
Color used to plot variable vectors |
var.lwd |
Line width used to plot variable vectors |
var.labels |
Optional vector of variable labels to replace variable names in the plots |
var.cex |
Character expansion size for variable labels in the plots |
var.pos |
Position(s) of variable vector labels wrt. the end point. If not specified, the labels are out-justified left and right with respect to the end points. |
rev.axes |
Logical, a vector of |
ellipse |
Draw data ellipses for canonical scores? |
ellipse.prob |
Coverage probability for the data ellipses |
fill.alpha |
Transparency value for the color used to fill the
ellipses. Use |
prefix |
Prefix used to label the canonical dimensions plotted |
suffix |
Suffix for labels of canonical dimensions. If
|
titles.1d |
A character vector of length 2, containing titles for the panels used to plot the canonical scores and structure vectors, for the case in which there is only one canonical dimension. |
points.1d |
Logical value for |
In typical usage, the term
should be a factor or interaction
corresponding to a multivariate test with 2 or more degrees of freedom for
the null hypothesis.
Canonical discriminant analysis is typically carried out in conjunction with
a one-way MANOVA design. It represents a linear transformation of the
response variables into a canonical space in which (a) each successive
canonical variate produces maximal separation among the groups (e.g.,
maximum univariate F statistics), and (b) all canonical variates are
mutually uncorrelated. For a one-way MANOVA with g groups and p responses,
there are dfh
= min( g-1, p) such canonical dimensions, and tests,
initially stated by Bartlett (1938) allow one to determine the number of
significant canonical dimensions.
Computational details for the one-way case are described in Cooley & Lohnes (1971), and in the SAS/STAT User's Guide, "The CANDISC procedure: Computational Details," http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_candisc_sect012.htm.
A generalized canonical discriminant analysis extends this idea to a general
multivariate linear model. Analysis of each term in the mlm
produces
a rank df_h
H matrix sum of squares and crossproducts matrix that
is tested against the rank df_e
E matrix by the standard
multivariate tests (Wilks' Lambda, Hotelling-Lawley trace, Pillai trace,
Roy's maximum root test). For any given term in the mlm
, the
generalized canonical discriminant analysis amounts to a standard
discriminant analysis based on the H matrix for that term in relation to the
full-model E matrix.
The plot method for candisc objects is typically a 2D plot, similar to a
biplot. It shows the canonical scores for the groups defined by the
term
as points and the canonical structure coefficients as vectors
from the origin.
If the canonical structure for a term
has ndim==1
, or
length(which)==1
, the 1D representation consists of a boxplot of
canonical scores and a vector diagram showing the magnitudes of the
structure coefficients.
An object of class candisc
with the following components:
dfh |
hypothesis degrees of freedom for |
dfe |
error degrees of freedom for the |
rank |
number of non-zero eigenvalues of |
eigenvalues |
eigenvalues of |
canrsq |
squared canonical correlations |
pct |
A vector containing the percentages of the |
ndim |
Number of canonical dimensions stored in the |
means |
A data.frame containing the class means for the levels of the factor(s) in the term |
factors |
A data frame containing the levels of the factor(s) in the |
term |
name of the |
terms |
A character vector containing the names of the terms in the
|
coeffs.raw |
A matrix containing the raw canonical coefficients |
coeffs.std |
A matrix containing the standardized canonical coefficients |
structure |
A matrix containing the canonical structure
coefficients on |
scores |
A data frame containing the
predictors in the |
candisc(mlm)
: "mlm"
method.
print(candisc)
: print()
method for "candisc"
objects.
summary(candisc)
: summary()
method for "candisc"
objects.
coef(candisc)
: coef()
method for "candisc"
objects.
plot(candisc)
: "plot"
method.
Michael Friendly and John Fox
Bartlett, M. S. (1938). Further aspects of the theory of multiple regression. Proc. Cambridge Philosophical Society 34, 33-34.
Cooley, W.W. & Lohnes, P.R. (1971). Multivariate Data Analysis, New York: Wiley.
Gittins, R. (1985). Canonical Analysis: A Review with Applications in Ecology, Berlin: Springer.
candiscList
, heplot
,
heplot3d
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
car::Anova(grass.mod, test="Wilks")
grass.can1 <-candisc(grass.mod, term="Species")
plot(grass.can1)
# library(heplots)
heplot(grass.can1, scale=6, fill=TRUE)
# iris data
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
#-- assign colors and symbols corresponding to species
col <- c("red", "brown", "green3")
pch <- 1:3
plot(iris.can, col=col, pch=pch)
heplot(iris.can)
# 1-dim plot
iris.can1 <- candisc(iris.mod, data=iris, ndim=1)
plot(iris.can1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.