lambdaest | R Documentation |
Investigation of the variables' variances/concentrations to support specification of lambda for k-prototypes clustering.
lambdaest(
x,
num.method = 1,
fac.method = 1,
outtype = "numeric",
verbose = TRUE
)
x |
Data.frame with both numerics and factors. |
num.method |
Integer 1 or 2. Specifies the heuristic used for numeric variables. |
fac.method |
Integer 1 or 2. Specifies the heuristic used for factor variables. |
outtype |
Specifies the desired output: either 'numeric', 'vector' or 'variation'. |
verbose |
Logical whether additional information about process should be printed. |
Variance (num.method = 1
) or standard deviation (num.method = 2
) of numeric variables
and 1-\sum_i p_i^2
(fac.method = 1
) or 1-\max_i p_i
(fac.method = 2
) for factors is computed.
lambda |
Ratio of averages over all numeric/factor variables is returned.
In case of |
# generate toy data with factors and numerics
n <- 100
prb <- 0.9
muk <- 1.5
clusid <- rep(1:4, each = n)
x1 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x1 <- c(x1, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x1 <- as.factor(x1)
x2 <- sample(c("A","B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
x2 <- c(x2, sample(c("A","B"), 2*n, replace = TRUE, prob = c(1-prb, prb)))
x2 <- as.factor(x2)
x3 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x4 <- c(rnorm(n, mean = -muk), rnorm(n, mean = muk), rnorm(n, mean = -muk), rnorm(n, mean = muk))
x <- data.frame(x1,x2,x3,x4)
lambdaest(x)
res <- kproto(x, 4, lambda = lambdaest(x))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.