Description Usage Arguments Value Author(s) References Examples
This function calculates a kernel matrix of the geometric random walk kernel K_GR.
1 |
G |
a list of |
par |
a coefficient lambda, with which the weight lambda_k for each step k is given as lambda_k = lambda^k |
a kernel matrix of the geometric random walk kernel K_GR
Mahito Sugiyama
Gartner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives, Learning Theory and Kernel Machines (LNCS 2777), 129-143 (2003) https://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.
Sugiyama, M., Borgwardt, K. M.: Halting in Random Walk Kernels, Advances in Neural Information Processing Systems (NIPS 2015), 28, 1630-1638 (2015) https://papers.nips.cc/paper/5688-halting-in-random-walk-kernels.pdf.
1 2 | data(mutag)
K <- CalculateGeometricRandomWalkKernel(mutag, .1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.