kml | R Documentation |
kml
is a implementation of k-means for longitudinal data (or trajectories). This algorithm is able to deal with missing value and
provides an easy way to re roll the algorithm several times, varying the starting conditions and/or the number of clusters looked for.
Here is the description of the algorithm. For an overview of the package, see kml-package.
kml(object,nbClusters=2:6,nbRedrawing=20,toPlot="none",parAlgo=parALGO())
object |
[ClusterLongData]: contains trajectories to cluster as
well as previous |
nbClusters |
[vector(numeric)]: Vector containing the number of clusters
with which |
nbRedrawing |
[numeric]: Sets the number of time that k-means must be re-run (with different starting conditions) for each number of clusters. |
toPlot |
|
parAlgo |
|
kml
works on object of class ClusterLongData
.
For each number included in nbClusters
, kml
computes a
Partition
then stores it in the field
cX
of the object ClusterLongData
according to the number
of clusters 'X'. The algorithm starts over as many times as it is told in nbRedrawing
. By default, it is executed for 2,
3, 4, 5 and 6 clusters 20 times each, namely 100 times.
When a Partition
has been found, it is added to the
corresponding slot c1,
c2, c3, ... or c26. The sublist cX stores the all Partition
with
X clusters. Inside a sublist, the
Partition
can be sorted from the biggest quality criterion to
the smallest (the best are stored first, using
ordered,ListPartition
), or not.
Note that Partition
are saved throughout the algorithm. If the user
interrupts the execution of kml
, the result is not lost. If the
user run kml
on an object, then runnig kml
again on the same object
will add some new Partition
to the one already found.
The possible starting conditions are defined in initializePartition
.
A ClusterLongData
object, after having added
some Partition
to it.
Behind kml, there are two different procedures :
Fast: when the parameter distance
is set to "euclidean"
and toPlot
is set to 'none' or
'criterion', kml
call a C
compiled (optimized) procedure.
Slow: when the user defines its own distance or if he wants
to see the construction of the clusters by setting toPlot
to
'traj' or 'both', kml
uses a R non compiled
programmes.
The C prodecure is 25 times faster than the R one.
So we advice to use the R procedure 1/ for trying some new method
(like using a new distance) or 2/ to "see" the very first clusters
construction, in order to check that every thing goes right. Then it
is better to
switch to the C procedure (like we do in Example
section).
If for a specific use, you need a different distance, feel free to contact the author.
Overview: kml-package
Classes : ClusterLongData
,
Partition
in package longitudinalData
Methods : clusterLongData
, choice
### Move to tempdir
wd <- getwd()
setwd(tempdir()); getwd()
### Generation of some data
cld1 <- generateArtificialLongData(25)
### We suspect 3, 4 or 6 clusters, we want 3 redrawing.
### We want to "see" what happen (so printCal and printTraj are TRUE)
kml(cld1,c(3,4,6),3,toPlot='both')
### 4 seems to be the best. We want 7 more redrawing.
### We don't want to see again, we want to get the result as fast as possible.
kml(cld1,4,10)
### Go back to current dir
setwd(wd)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.