Rcgmin | R Documentation |
Attempts to minimize an unconstrained or bounds (box) and mask constrained function
of many parameters by a nonlinear conjugate gradients method using the Dai / Yuan
update and restart. Based on Nash (1979) Algorithm 22 for its main structure,
which is method "CG" of the optim()
function that has rarely performed well.
Bounds (or box) constraints and masks (equality constraints) can be imposed on
parameters. This code is entirely in R to allow users to explore and understand
the method.
Rcgmin
is a wrapper that calls Rcgminu
for unconstrained
problems, else Rcgminb
. The direct call of the subsidiary routines
is discouraged.
Rcgmin(par, fn, gr, lower, upper, bdmsk, control = list(), ...)
Rcgminu(par, fn, gr, control = list(), ...)
Rcgminb(par, fn, gr, lower, upper, bdmsk, control = list(), ...)
par |
A numeric vector of starting estimates. |
fn |
A function that returns the value of the objective at the
supplied set of parameters |
gr |
A function that returns the gradient of the objective at the
supplied set of parameters |
lower |
A vector of lower bounds on the parameters. |
upper |
A vector of upper bounds on the parameters. |
bdmsk |
An indicator vector, having 1 for each parameter that is "free" or unconstrained, and 0 for any parameter that is fixed or MASKED for the duration of the optimization. |
control |
An optional list of control settings. |
... |
Further arguments to be passed to |
Function fn
must return a numeric value.
gr
must be provided, either as a user-supplied function, or as the quoted name
of one of the gradient approximation routines provided in this package. Choices are
routines grfwd
, grback
, grcentral
or grnd
. The last
of these calls the grad()
function from package numDeriv
. These
are called by putting the name of the (numerical) gradient function in
quotation marks, e.g.,
gr="grcentral"
to use the central difference numerical approximation. (This is the recommended choice in the absence of other considerations.)
Note that all but the grnd
routine use a stepsize parameter that
can be redefined in a special environment optsp
in variable deps
.
The default is optsp$deps = 1e-06
.
However, redefining this is discouraged unless you understand what
you are doing.
The control
argument is a list.
A limit on the number of iterations (default 500). Note that this is
used to compute a quantity maxfeval
<-round(sqrt(n+1)*maxit) where n is the
number of parameters to be minimized.
Set 0 (default) for no output, >0 for trace output (larger values imply more output).
Tolerance used to calculate numerical gradients. Default is 1.0E-7. See
source code for Rcgmin
for details of application.
dowarn
= TRUE if we want warnings generated by optimx. Default is TRUE.
tol
Tolerance used in testing the size of the square of the gradient.
Default is 0 on input, which uses a value of tolgr = npar*npar*.Machine$double.eps
in testing if crossprod(g) <= tolgr * (abs(fmin) + reltest). If the user supplies
a value for tol
that is non-zero, then that value is used for tolgr.
reltest=100 is only alterable by changing the code. fmin is the current best value found for the function minimum value.
Note that the scale of the gradient means that tests for a small gradient can easily be mismatched to a given problem. The defaults in Rcgmin are a "best guess".
checkgrad
= TRUE if we want gradient function checked against numerical approximations. Default is FALSE.
checkbounds
= TRUE if we want bounds verified. Default is TRUE.
As of 2011-11-21 the following controls have been REMOVED
There is now a choice of numerical gradient routines. See argument
gr
.
To maximize user_function, supply a function that computes (-1)*user_function.
An alternative is to call Rcgmin via the package optimx, where the MAXIMIZE field
of the OPCON structure in package optfntools
is used.
A list with components:
par |
The best set of parameters found. |
value |
The value of the objective at the best set of parameters found. |
counts |
A two-element integer vector giving the number of calls to 'fn' and 'gr' respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to 'fn' to compute a finite-difference approximation to the gradient. |
convergence |
An integer code. '0' indicates successful convergence. '1' indicates that the function evaluation count 'maxfeval' was reached. '2' indicates initial point is infeasible. |
message |
A character string giving any additional information returned by the optimizer, or 'NULL'. |
bdmsk |
Returned index describing the status of bounds and masks at the proposed solution. Parameters for which bdmsk are 1 are unconstrained or "free", those with bdmsk 0 are masked i.e., fixed. For historical reasons, we indicate a parameter is at a lower bound using -3 or upper bound using -1. |
Dai, Y. H. and Y. Yuan (2001). An efficient hybrid conjugate gradient method for unconstrained optimization. Annals of Operations Research 103 (1-4), 33–47.
Nash JC (1979). Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. Adam Hilger, Bristol. Second Edition, 1990, Bristol: Institute of Physics Publications.
Nash, J. C. and M. Walker-Smith (1987). Nonlinear Parameter Estimation: An Integrated System in BASIC. New York: Marcel Dekker. See https://www.nashinfo.com/nlpe.htm for a downloadable version of this plus some extras.
optim
#####################
require(numDeriv)
## Rosenbrock Banana function
fr <- function(x) {
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}
grn<-function(x){
gg<-grad(fr, x)
}
ansrosenbrock0 <- Rcgmin(fn=fr,gr=grn, par=c(1,2))
print(ansrosenbrock0) # use print to allow copy to separate file that
# can be called using source()
#####################
# Simple bounds and masks test
bt.f<-function(x){
sum(x*x)
}
bt.g<-function(x){
gg<-2.0*x
}
n<-10
xx<-rep(0,n)
lower<-rep(0,n)
upper<-lower # to get arrays set
bdmsk<-rep(1,n)
bdmsk[(trunc(n/2)+1)]<-0
for (i in 1:n) {
lower[i]<-1.0*(i-1)*(n-1)/n
upper[i]<-1.0*i*(n+1)/n
}
xx<-0.5*(lower+upper)
ansbt<-Rcgmin(xx, bt.f, bt.g, lower, upper, bdmsk, control=list(trace=1))
print(ansbt)
#####################
genrose.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
return(fval)
}
genrose.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
gg
}
# analytic gradient test
xx<-rep(pi,10)
lower<-NULL
upper<-NULL
bdmsk<-NULL
genrosea<-Rcgmin(xx,genrose.f, genrose.g, gs=10)
genrosen<-optimr(xx, genrose.f, "grfwd", method="Rcgmin", gs=10)
genrosenn<-try(Rcgmin(xx,genrose.f, gs=10)) # use local numerical gradient
cat("genrosea uses analytic gradient\n")
print(genrosea)
cat("genrosen uses default gradient approximation\n")
print(genrosen)
cat("timings B vs U\n")
lo<-rep(-100,10)
up<-rep(100,10)
bdmsk<-rep(1,10)
tb<-system.time(ab<-Rcgminb(xx,genrose.f, genrose.g, lower=lo, upper=up, bdmsk=bdmsk))[1]
tu<-system.time(au<-Rcgminu(xx,genrose.f, genrose.g))[1]
cat("times U=",tu," B=",tb,"\n")
cat("solution Rcgminu\n")
print(au)
cat("solution Rcgminb\n")
print(ab)
cat("diff fu-fb=",au$value-ab$value,"\n")
cat("max abs parameter diff = ", max(abs(au$par-ab$par)),"\n")
maxfn<-function(x) {
n<-length(x)
ss<-seq(1,n)
f<-10-(crossprod(x-ss))^2
f<-as.numeric(f)
return(f)
}
gmaxfn<-function(x) {
gg<-grad(maxfn, x)
}
negmaxfn<-function(x) {
f<-(-1)*maxfn(x)
return(f)
}
cat("test that maximize=TRUE works correctly\n")
n<-6
xx<-rep(1,n)
ansmax<-Rcgmin(xx,maxfn, gmaxfn, control=list(maximize=TRUE,trace=1))
print(ansmax)
cat("using the negmax function should give same parameters\n")
ansnegmaxn<-optimr(xx,negmaxfn, "grfwd", method="Rcgmin", control=list(trace=1))
print(ansnegmaxn)
##################### From Rvmmin.Rd
cat("test bounds and masks\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds1<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo,upper=up)
print(grbds1)
cat("test lower bound only\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
grbds2<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo)
print(grbds2)
cat("test lower bound single value only\n")
nn<-4
startx<-rep(pi,nn)
lo<-2
up<-rep(10,nn)
grbds3<-Rcgmin(startx,genrose.f, gr=genrose.g,lower=lo)
print(grbds3)
cat("test upper bound only\n")
nn<-4
startx<-rep(pi,nn)
lo<-rep(2,nn)
up<-rep(10,nn)
grbds4<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=up)
print(grbds4)
cat("test upper bound single value only\n")
nn<-4
startx<-rep(pi,nn)
grbds5<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=10)
print(grbds5)
cat("test masks only\n")
nn<-6
bd<-c(1,1,0,0,1,1)
startx<-rep(pi,nn)
grbds6<-Rcgmin(startx,genrose.f, gr=genrose.g,bdmsk=bd)
print(grbds6)
cat("test upper bound on first two elements only\n")
nn<-4
startx<-rep(pi,nn)
upper<-c(10,8, Inf, Inf)
grbds7<-Rcgmin(startx,genrose.f, gr=genrose.g,upper=upper)
print(grbds7)
cat("test lower bound on first two elements only\n")
nn<-4
startx<-rep(0,nn)
lower<-c(0,1.1, -Inf, -Inf)
grbds8<-Rcgmin(startx,genrose.f,genrose.g,lower=lower, control=list(maxit=2000))
print(grbds8)
cat("test n=1 problem using simple squares of parameter\n")
sqtst<-function(xx) {
res<-sum((xx-2)*(xx-2))
}
gsqtst<-function(xx) {
gg<-2*(xx-2)
}
######### One dimension test
nn<-1
startx<-rep(0,nn)
onepar<-Rcgmin(startx,sqtst, gr=gsqtst,control=list(trace=1))
print(onepar)
cat("Suppress warnings\n")
oneparnw<-Rcgmin(startx,sqtst, gr=gsqtst,control=list(dowarn=FALSE,trace=1))
print(oneparnw)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.