View source: R/spec_regarima.R
add_outlier | R Documentation |
Generic function to add outliers or Ramp regressors (add_outlier()
and
add_ramp()
) to a specification or to remove them
(remove_outlier()
and remove_ramp()
).
add_outlier(x, type, date, name = sprintf("%s (%s)", type, date), coef = 0)
remove_outlier(x, type = NULL, date = NULL, name = NULL)
add_ramp(x, start, end, name = sprintf("rp.%s - %s", start, end), coef = 0)
remove_ramp(x, start = NULL, end = NULL, name = NULL)
x |
the specification to customize, must be a "SPEC" class object (see details). |
type , date |
type and date of the outliers. Possible |
name |
the name of the variable (to format print). |
coef |
the coefficient if needs to be fixed. If equal to 0 the outliers/ramps coefficients are estimated. |
start , end |
dates of the ramp regressor. |
x
specification parameter must be a JD3_X13_SPEC" class object
generated with rjd3x13::x13_spec()
(or "JD3_REGARIMA_SPEC" generated
with rjd3x13::spec_regarima()
or "JD3_TRAMOSEATS_SPEC" generated with
rjd3tramoseats::spec_tramoseats()
or "JD3_TRAMO_SPEC" generated with
rjd3tramoseats::spec_tramo()
). If a Seasonal adjustment process is
performed, each type of Outlier will be allocated to a pre-defined component
after the decomposition: "AO" and "TC" to the irregular, "LS" and Ramps to
the trend.
More information on outliers and other auxiliary variables in JDemetra+ online documentation: https://jdemetra-new-documentation.netlify.app/
add_usrdefvar
, intervention_variable
# init_spec <- rjd3x13::x13_spec("RSA5c")
# new_spec<-rjd3toolkit::add_outlier(init_spec, type="AO", date="2012-01-01")
# ramp on year 2012
# new_spec<-rjd3toolkit::add_ramp(init_spec,start="2012-01-01",end="2012-12-01")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.