| binless | R Documentation | 
Use this function in place of traditional binning methods to derive VPC. For continuous
VPC, this is obtained using additive quantile regression (quantreg::rqss()) and LOESS for pcVPC. While for categorical
VPC, this is obtained using a generalized additive model (gam(family = "binomial")).
binless(o, ...)
## S3 method for class 'tidyvpcobj'
binless(
  o,
  optimize = TRUE,
  optimization.interval = c(0, 7),
  loess.ypc = NULL,
  lambda = NULL,
  span = NULL,
  sp = NULL,
  ...
)
| o | A  | 
| ... | Other arguments to include will be ignored. | 
| optimize | Logical indicating whether smoothing parameters should be optimized using AIC. | 
| optimization.interval | Numeric vector of length 2 specifying the min/max range of smoothing parameter for optimization. Only applicable if  | 
| loess.ypc | (Deprecated) Argument is ignored. For a LOESS pcVPC using the 'binless' method, usage of  | 
| lambda | Numeric vector of length 3 specifying lambda values for each quantile. If stratified, specify a  | 
| span | Numeric between 0,1 specifying smoothing parameter for LOESS prediction correction. Only applicable for continuous VPC with  | 
| sp | List of smoothing parameters applied to  | 
For continuous VPC, updates tidyvpcobj with additive quantile regression fits for observed and simulated data for quantiles specified in the qpred argument of vpcstats().
If the optimize = TRUE argument is specified, the resulting tidyvpcobj will contain optimized lambda values according to AIC.  For prediction
corrected VPC (pcVPC), specifying loess.ypc = TRUE will return optimized span value for LOESS smoothing. For categorical VPC,
updates tidyvpcobj with fits obtained by gam(family="binomial") for observed and simulated data for each category of DV (in each stratum if stratify defined).
If optimize = TRUE argument is specified, the resulting tidyvpcobj wil contain optimized sp values according to AIC.
observed simulated censoring predcorrect stratify binning vpcstats
require(magrittr)
require(data.table)
obs_data <- obs_data[MDV == 0]
sim_data <- sim_data[MDV == 0]
 vpc <- observed(obs_data, y = DV, x = TIME) %>%
      simulated(sim_data, y = DV) %>%
      binless() %>%
      vpcstats()
 # Binless example with LOESS prediction correction
 obs_data$PRED <- sim_data[REP == 1, PRED]
 vpc <- observed(obs_data, y = DV, x = TIME) %>%
      simulated(sim_data, y = DV) %>%
      binless(optimize = TRUE) %>%
      predcorrect(pred = PRED) %>% 
      vpcstats()
# Binless example with user specified lambda values stratified on
# "GENDER" with 2 levels ("M", "F"), 10%, 50%, 90% quantiles.
 lambda_strat <- data.table(
 GENDER_M = c(3,5,2),
 GENDER_F = c(1,3,4)
 )
 vpc <- observed(obs_data, y = DV, x = TIME) %>%
      simulated(sim_data, y = DV) %>%
      stratify(~ GENDER) %>%
      binless(optimize = FALSE, lambda = lambda_strat) %>%
      vpcstats(qpred = c(0.1, 0.5, 0.9))
 # Binless example for categorical DV with optimized smoothing
 vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>%
       simulated(sim_cat_data, ysim = DV) %>%
       stratify(~ Country_ID_code) %>%
       binless() %>%
       vpcstats(vpc.type = "cat", quantile.type = 6)
 # Binless example for categorical DV with user specified sp values
 user_sp <- list(
 Country1_prob0 = 100,
 Country1_prob1 = 3,
 Country1_prob2 = 4,
 Country2_prob0 = 90,
 Country2_prob1 = 3,
 Country2_prob2 = 4,
 Country3_prob0 = 55,
 Country3_prob1 = 3,
 Country3_prob2 = 200)
 vpc <- observed(obs_cat_data, x = agemonths, yobs = zlencat) %>%
        simulated(sim_cat_data, ysim = DV) %>%
        stratify(~ Country_ID_code) %>%
        binless(optimize = FALSE, sp = user_sp) %>%
        vpcstats(vpc.type = "categorical", conf.level = 0.9, quantile.type = 6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.