历程.md:

GITHUB
hulinhui-code/hulinhui: Hu Linhui's Personal Package

"
+ 又出现问题,突然又连不上R内核,但安装没问题。
+ 解决方法:重新装上D盘的R,重新通过C盘里的R终端通过`

telegram: telegram.

CRAN
telegram: R Wrapper Around the Telegram Bot API

R: telegram.
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML() {

telegram: telegram.

GITHUB
lbraglia/telegram: R Wrapper Around the Telegram Bot API

R: telegram.
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML() {

VIM: variability independent of mean (VIM)

CRAN
VIMean: Variability Independent of Mean

R: variability independent of mean (VIM)
VIMR Documentation
variability independent of mean (VIM)

vim: Edit a File With "VIM" if Possible

CRAN
fritools: Utilities for the Forest Research Institute of the State Baden-Wuerttemberg

R: Edit a File With "VIM" if Possible
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

vim: Edit a File With "VIM" if Possible

CRAN
fritools2: Utilities for the Forest Research Institute of the State Baden-Wuerttemberg

R: Edit a File With "VIM" if Possible
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

telegram: R Wrapper Around the Telegram Bot API

CRAN
telegram: R Wrapper Around the Telegram Bot API

Package: telegram
Title: R Wrapper Around the Telegram Bot API
Version: 0.7.1

vim: Estimate AUC VIM

CRAN
survML: Tools for Flexible Survival Analysis Using Machine Learning

R: Estimate AUC VIM
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML

vim: Variable Importance Measures (VIMs)

CRAN
logicDT: Identifying Interactions Between Binary Predictors

R: Variable Importance Measures (VIMs)
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

vignettes/drhur-vignette_cn.Rmd:

CRAN
drhur: Learning R with Dr. Hu

,让他们能够轻松且高效地融入到 R 的世界。
使用本的最佳方式是配合由清华大学政治学系副教授胡悦博士设的 "Learning R with Dr. Hu"工作坊共同使用。
中的模块实际上就是这个工作坊系列部分初期课程

f_renren_sns: 好关系络的可视化

GITHUB
yibochen/Renren: fetch and analyse renren data

R: 好关系络的可视化
f_renren_snsR Documentation
关系络的可视化

inst/doc/drhur-vignette_cn.Rmd:

CRAN
drhur: Learning R with Dr. Hu

,让他们能够轻松且高效地融入到 R 的世界。
使用本的最佳方式是配合由清华大学政治学系副教授胡悦博士设的 "Learning R with Dr. Hu"工作坊共同使用。
中的模块实际上就是这个工作坊系列部分初期课程

lbraglia/telegram: R Wrapper Around the Telegram Bot API

GITHUB
lbraglia/telegram: R Wrapper Around the Telegram Bot API

Package: telegram
Title: R Wrapper Around the Telegram Bot API
Version: 0.7.1

inst/other/get_tuple.R:

CRAN
jiebaR: Chinese Text Segmentation

ee = "新浪微博是一款为大众提供娱乐休闲生活服务的信息分享和。新浪微博于2009年8月14日始内测,9月25日,新浪微博正式添加了@功能以及私信功能,此外还提供“评论”和“转”功能,供用户流。
新浪微博采用了与新浪博客

VIM: Visualization and Imputation of Missing Values

CRAN
VIM: Visualization and Imputation of Missing Values

Package: VIM
Version: 6.2.2
Title: Visualization and Imputation of Missing Values

R/VIM-package.R
man/VIM-package.Rd

regAddin: 注册Rstudio插

GITHUB
takewiki/addinMenus: addinMenu for menu addon

= "false")
Arguments
addinName

regAddin: 注册Rstudio插

GITHUB
takewiki/tstk: tool kit in takewiki solutions

",
addinInteractive = "false"
Arguments

experiments/20180703_按等级分和同比计算设计.Rmd:

GITHUB
ahorawzy/Mreport: Monthly Report of traffic condition

也用不到,所以可以用非加权均数模拟2017年5月数据,由此环比计算框架。
### 尝试
```{r}

experiments/20171219_10月1日通流随机森林建模.Rmd:

GITHUB
ahorawzy/TFTSA: Traffic Flow Time Series Analysis

LOESS数据,现不行,因为和LOESS几乎重合,没有区别;后面使用原换算当量的通流量。总误差方和为47171.85。使用指数滑法预测下一个5min,得到总误差方和为47189.7,和ARIMA模型差距不大,但指数滑的计算量更低,参数

mo_submit: 生产订单提

GITHUB
takewiki/kdcr: kdc in R

",
kdc_url = "http://47.103.221.12:8126/k3cloud",
FBillList = list("MO033473")