shinyElement-class: 定义shinyElement的

GITHUB
takewiki/tsShiny:

R: 定义shinyElement的
shinyElement-classR Documentation
定义shinyElement的

superButton-class: 定义superButton

GITHUB
takewiki/tsShiny:

R: 定义superButton
superButton-classR Documentation
定义superButton

superButton-class: 定义superButton

GITHUB
takewiki/tsui: user interface elements from shiny,H5,css,js in takewiki solutions

R: 定义superButton
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML

shinyElement-class: 定义shinyElement的

GITHUB
takewiki/tsui: user interface elements from shiny,H5,css,js in takewiki solutions

R: 定义shinyElement的
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML

jdbc_driver-class: 定义一下的jdbc_dirver类

GITHUB
takewiki/tsda: data access and driver interface in takewiki solutions

R: 定义一下的jdbc_dirver类
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML

ai2_env: 针对对环境的支持

GITHUB
takewiki/tsai: takewiki solution for AI

R: 针对对环境的支持
ai2_envR Documentation
针对对环境的支持

tg: tg "to grob" helper function

GITHUB
almartin82/mapvizieR: Visualization and Data Analysis tools for NWEA MAP student data

R: tg "to grob" helper function
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

com: com

GITHUB
jfq3/QsNullModels: My null model functions

R: com
comR Documentation
com

COM: Full access to client COM invocation

GITHUB
omegahat/RDCOMClient: R-DCOM client

R: Full access to client COM invocation
.COMR Documentation
Full access to client COM invocation

experiments/20180409_序列生成制分析.Rmd:

GITHUB
ahorawzy/TFTSA: Traffic Flow Time Series Analysis

研究分析。
相比第一部分交通流聚类,第二部分我看的文章较少,对于怎么做还不甚清楚。相比第一部分,第二部分所处理数据的工作量没有那么大,但难在思路和方法的创新上,并且要考虑到与第一部分结合。
今天的要是3.4节交通流序列生成制分析

aws: AWS downloader

GITHUB
RajLabMSSM/downloadR: echoverse module: Single- and multi-threaded downloading functions

R: AWS downloader
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function processMathHTML

experiments/20180731_模收费数据.Rmd:

GITHUB
ahorawzy/HVS: This package is designed for Highway Virtual Traffic Survey Station project.

(lubridate)
library(magrittr)
今天的要是利用昨天下午建好的10个点的小路网,模出收费数据,计算交通流。即在小路网上打通1,2,3三步。

TGS: Rapid Reconstruction of Time-Varying Gene Regulatory Networks

CRAN
TGS: Rapid Reconstruction of Time-Varying Gene Regulatory Networks

Package: TGS
Version: 1.0.1
Title: Rapid Reconstruction of Time-Varying Gene Regulatory Networks

R/TGS-package.R
man/TGS-package.Rd

aws: AWS for local constant models on a grid

GITHUB
neuroconductor-releases/aws: Adaptive Weights Smoothing

R: AWS for local constant models on a grid
awsR Documentation
AWS for local constant models on a grid

aws: AWS for local constant models on a grid

GITHUB
WIAS-BERLIN/aws: Adaptive Weights Smoothing

R: AWS for local constant models on a grid
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

aws: AWS for local constant models on a grid

CRAN
aws: Adaptive Weights Smoothing

R: AWS for local constant models on a grid
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function

TG: Generalized g-Prior Distribution for Coefficients in BMA

CRAN
BAS: Bayesian Variable Selection and Model Averaging using Bayesian Adaptive Sampling

g-priors on coefficients for BAS, where u = 1/(1+g) has a Gamma distribution
supported on (0, 1].
Usage

tg: Run metamodel

GITHUB
lucabutikofer/LingraNR: R Interface to LINGRA-N Tool

in Qi et al. 2018 for
grassland productivity on temporary (tg()), permanent (pg())
and semi-natural (rough grazing, rg

aws: AWS for local constant models on a grid

GITHUB
neuroconductor/aws: Adaptive Weights Smoothing

R: AWS for local constant models on a grid
awsR Documentation
AWS for local constant models on a grid

TGS-package: TGS: A package for Rapid Reconstruction of Time-Varying Gene...

CRAN
TGS: Rapid Reconstruction of Time-Varying Gene Regulatory Networks

R: TGS: A package for Rapid Reconstruction of Time-Varying Gene...
TGS-packageR Documentation
TGS: A package