warna: warna
R: warna
warnaR Documentation
warna
R: warna
warnaR Documentation
warna
R: Exponential Moving Average (EMA)
emaR Documentation
Exponential Moving Average (EMA)
R: Exponential moving average filter (EMA)
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt"};
function
R: Weighted averaging (WA) regression and calibration
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt
R: Weighted averaging (WA) regression and calibration
const macros = { "\\R": "\\textsf{R}", "\\code": "\\texttt
R: Add Exponentially-Weighted Moving Average (EMA) to the chart
const macros = { "\\R": "\\textsf{R}", "\\code
R: EMA - Easy Microarray Analysis
EMA-packageR Documentation
EMA - Easy Microarray Analysis
the exponential moving average
Description
EMA creates a streaming algorithm that can be used to
}); }
return;
EMAR Documentation
Package: EMA
Type: Package
Title: Easy Microarray Data Analysis
Package: WA
Type: Package
Title: While-Alive Loss Rate for Recurrent Event in the Presence of
moving average aka EMA is exponentially weighted SMA. EMAs have faster response to recent value changes than SMAs.
Usage
of Washington.
Usage
data("WA")
R: Exponential Moving Average
emaR Documentation
Exponential Moving Average
and classicial
deshrinking are supported.
Usage
of Washington.
Usage
data("WA")
Package: EMAS
Type: Package
Title: Epigenome-Wide Mediation Analysis Study
ema(x, n)
Arguments
a numeric vector
the exponential moving average
Description
EMA creates a streaming algorithm that can be used to
] + (1-alpha) * y[i-1]
Usage
ema(x, alpha, miss = "reset")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.