WA: Weighted averaging (WA) regression and calibration
^2 + v2^2.
Function crossval also returns an object of class WA and adds the following named elements:
predicted
^2 + v2^2.
Function crossval also returns an object of class WA and adds the following named elements:
predicted
^2 + v2^2.
Function crossval also returns an object of class WA and adds the following named elements:
predicted
Package: WA
Type: Package
Title: While-Alive Loss Rate for Recurrent Event in the Presence of
of Washington.
Usage
data("WA")
## tolerance DW
mod3 <- wa(SumSST ~ ., data = ImbrieKipp, tol.dw = TRUE,
min.tol = 2, small.tol = "mean
of Washington.
Usage
data("WA")
solution
Description
Extracts the weighted averages of a CCA solution
of Washington.
Usage
data("WA")
transform". Communications in Statistics - Theory and Methods, 41(9): 1543-1556. DOI
Examples
X=stats::rgamma(20,3,6)
of a CCA solution
Description
Extracts the weighted averages of a CCA solution
Package: turtleviewer
Title: WA Turtle Data Viewer
Version: 0.2.0.20200102
Type: Package
Package: wastdr
Title: WA Sea Turtle Database 'WAStD' API Wrapper
<- length(mat_list)
n <- length(y)
p <- numeric(d)
\theta \\
1 - \theta
\end{cases}
&sanitize=true" align=middle width=57.32199495pt height=16.438356pt/></p>
2. Given data \(Y_{1}, Y_{2}, ., Y_{n},\) write
\theta \\
1 - \theta
\end{cases}
#' differences Step 1. Nuisance training. and Step 2. Pseudo-outcome
#' regression", "4.2 Estimating the bounds" and "4.3
])])
print("x: (first 6x6)")
print(paste("dim(x) =", dim(object@x)[1], "x", dim(object@x)[2]))
&sanitize=true" align=middle width=57.32199495pt height=16.438356pt/></p>
2. Given data \(Y_{1}, Y_{2}, ., Y_{n},\) write
&sanitize=true" align=middle width=57.32199495pt height=16.438356pt/></p>
2. Given data \(Y_{1}, Y_{2}, ., Y_{n},\) write
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.