R/correctness.R:

BIOC
TRONCO: TRONCO, an R package for TRanslational ONCOlogy

#' is.compliant(test_dataset)
#'
#' @param x A TRONCO compliant dataset.

simulateSNPglm: Simulation of SNP data

CRAN
scrime: Analysis of High-Dimensional Categorical Data Such as SNP Data

= NULL,
beta0 = -0.5, beta = 1.5, maf = 0.25, sample.y = TRUE, p.cutoff = 0.5,
err.fun = NULL, rand = NA

aplot.statErr: Calculate mean/median and error of values in vector 'x

GITHUB
PfaffLab/aplot: Awesome 2d Plotting

= c("mean", "median"), err.fun = c("sd", "sem", "var",
"ci"), ci = 0.95, num.bootstraps = 1, boot.err.mode = 1

is.compliant: is.compliant

BIOC
TRONCO: TRONCO, an R package for TRanslational ONCOlogy

err.fun = "[ERR]",
stage = !(all(is.null(x$stages)) || all(is.na(x$stages)))
Arguments

R/boot.R:

CRAN
argo: Accurate Estimation of Influenza Epidemics using Google Search Data

")){
if(type[1] %in% c("mse", "mspe")){
err.fun <- function(tsb) {

R/attach.r:

GITHUB
mkoohafkan/perspyr: Persistent Python Process in R

= function(e) NULL)
err.funs = which(!(funs %in% names(fun.list)))
if (length(err.funs) > 0L)

R/codes.R:

GITHUB
PfaffLab/aplot: Awesome 2d Plotting

# --
if(has.g2) {
aggr.res.x <- aplot.statErr(x[idx], fun=aggr.fun, err.fun=aggr.err.fun,

R/simulateSNPglm.R:

CRAN
scrime: Analysis of High-Dimensional Categorical Data Such as SNP Data

=TRUE,p.cutoff=0.5,err.fun=NULL,rand=NA,...){
check.snplist<-TRUE
if(is.null(list.snp) & is.null(list.ia

R/getCall.R:

CRAN
scrime: Analysis of High-Dimensional Categorical Data Such as SNP Data

`getCall` <-
function(call,n.obs){
fun<-as.character(call$err.fun)

R/getknn.R:

GITHUB
mlesnoff/rnirs: Dimension reduction, Regression and Discrimination for Chemometrics

), function(x) order(x, decreasing = FALSE))
znn <- data.frame(z)
z <- lapply(data.frame(D), function

R/normalize_height.R:

CRAN
lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications

. It now forces interpolation with NN.
if (nnas > 0)
nn <- knnidw(1, rmax = .Machine$double.xmax)

R/check_chunk.r:

GITHUB
skranz/RTutor3: Temporary package: Complete rewrite of RTutor internals combined with armd

("stepwise.eval.stud.expr")
if (!is.null(seed))
set.seed(seed)

R/selection.R:

BIOC
TRONCO: TRONCO, an R package for TRanslational ONCOlogy

silent = FALSE) {
is.compliant(x, err.fun='events.selection: input')
dataset = x$genotypes

R/check_chunk.r:

GITHUB
skranz/RTutor2: Complete rewrite of RTutor internals combined with armd

("stepwise.eval.stud.expr")
if (!is.null(seed))
set.seed(seed)

R/elfunctions.R:

CRAN
smoothemplik: Smoothed Empirical Likelihood

<- zu[1:2]
znn <- zu[(l-1):l]
} else {

R/bibtex.R:

CRAN
bibtex: Bibtex Parser

type <- attr(x, "entry")
key <- attr(x, "key")
y <- as.list(x)

R/rasterize_terrain.R:

CRAN
lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications

= .Machine$double.xmax)
sub_grid <- data.frame(X = grid$X[isna], Y = grid$Y[isna])
znn <- nn(ground, sub_grid)