R64.R:

GITHUB
fredfeng/MorpheusData: Data sets for Morpheus

# making table data sets
library(dplyr)
library(tidyr)

R/RcppExports.R:

BIOC
phenopath: Genomic trajectories with heterogeneous genetic and environmental backgrounds

cavi_update_tau <- function(y, x, m_z, s_z, m_lambda, s_lambda, m_alpha, m_beta, s_alpha, s_beta, m_mu, s_mu, a, b) {
.Call

antsAverageImages: Computes average of image list

GITHUB
neuroconductor-devel/ANTsR: ANTs in R: Quantification Tools for Biomedical Images

a progress bar
Author(s)
Avants BB, Pustina D

R/plot_gam_predict.R:

CRAN
grafify: Easy Graphs for Data Visualisation and Linear Models for ANOVA

` (should match variable in the model exactly)
#' @param symsize size of symbols (default = 1)
#' @param s_alpha opacity

R/plot_qq_gam.R:

CRAN
grafify: Easy Graphs for Data Visualisation and Linear Models for ANOVA

symsize size of symbols (default = 2)
#' @param s_colour colour of symbols (default = `ok_orange`)
#' @param s_alpha

R/antsAverageImages.R:

GITHUB
neuroconductor-devel/ANTsR: ANTs in R: Quantification Tools for Biomedical Images

a progress bar
#' @author Avants BB, Pustina D
#' @examples

R/RcppExports.R:

CRAN
GAGAs: Global Adaptive Generative Adjustment Algorithm for Generalized Linear Models

, then the first column of \code{X} must be all 1s.
#' @param y Quantitative response N*1 matrix.
#' @param s_alpha Hyperparameter

R/gat-infomat.R:

GITHUB
dan9401/st: Asymmetric Student t-Distributions

)*dzdphi
s_alpha <- 1/alpha + nu/alpha^2*log(A) - nu/alpha/A*( r*(c*g)^(alpha*r)*log(c*g) - 1/r*(c*g)^(-alpha/r)*log(c

R/IV_PRW.R:

GITHUB
siqixu/MRCIP: MRCIP: A robust Mendelian randomization method accounting for correlated and idiosyncratic pleiotropy

IV_PRW <- function(data,
beta=0, mu_gamma=NA, s_gamma=NA, s_alpha=NA, rho=0

tests/testthat/test-antsRegistration.R:

GITHUB
muschellij2/atropos: Core Software Infrastructure for 'ANTsR'

(getANTsRData("r16"))
mi <- antsImageRead(getANTsRData("r64"))
rig <- antsRegistration(

R/gat-infomat.R:

GITHUB
dan9401/SkewtDist: Asymmetric Student t-Distributions

)*dzdphi
s_alpha <- 1/alpha + nu/alpha^2*log(A) - nu/alpha/A*( r*(c*g)^(alpha*r)*log(c*g) - 1/r*(c*g)^(-alpha/r)*log(c

R/gat-infomat.R:

GITHUB
dan9401/skewtDist: Asymmetric Student t-Distributions

)*dzdphi
s_alpha <- 1/alpha + nu/alpha^2*log(A) - nu/alpha/A*( r*(c*g)^(alpha*r)*log(c*g) - 1/r*(c*g)^(-alpha/r)*log(c

R/MRCIP.R:

GITHUB
siqixu/MRCIP: MRCIP: A robust Mendelian randomization method accounting for correlated and idiosyncratic pleiotropy

MRCIP <- function(data,
beta=0, mu_gamma=NA, s_gamma=NA, s_alpha=NA, rho=0,
h=NA

R/optim.R:

GITHUB
clement-lee/crandep: Network Analysis of Dependencies of CRAN Packages

for alpha
#' @param s_alpha Positive real number, standard deviation of the prior normal distribution for alpha

R/optim.R:

GITHUB
clement-lee/rackage: Network Analysis of Dependencies of CRAN Packages

for alpha
#' @param s_alpha Positive real number, standard deviation of the prior normal distribution for alpha

R/hbl_mcmc_independent.R:

CRAN
historicalborrowlong: Longitudinal Bayesian Historical Borrowing Models

("^covariate", colnames(data), value = TRUE),
constraint = FALSE,
s_alpha = 30,

R/FIM.R:

GITHUB
siqixu/MRCIP: MRCIP: A robust Mendelian randomization method accounting for correlated and idiosyncratic pleiotropy

s_alpha = theta[4]
rho = theta[5]
cov = s_gamma * s_alpha * rho

R/hb_mcmc_independent.R:

CRAN
historicalborrow: Non-Longitudinal Bayesian Historical Borrowing Models

= "patient",
covariates = grep("^covariate", colnames(data), value = TRUE),
s_alpha = 30,

R/hbl_mcmc_pool.R:

CRAN
historicalborrowlong: Longitudinal Bayesian Historical Borrowing Models

s_alpha = 30,
s_delta = 30,
s_beta = 30,

R/optim.R:

CRAN
crandep: Network Analysis of Dependencies of CRAN Packages

for alpha
#' @param s_alpha Positive real number, standard deviation of the prior normal distribution for alpha