HarshComp: a blemish detection program for microarray chips: extended...

Description Usage Arguments Value Author(s) References

View source: R/Harshlight.R

Description

Harshlight automatically detects and masks blemishes in microarray chips of class AffyBatch

Usage

1
2
3
4
5
HarshComp(affy.object, my.ErrorImage = NULL, extended.radius = 10,
compact.quant.bright = 0.025, compact.quant.dark = 0.025,
compact.size.limit = 15, compact.connect = 8, compact.pval = 0.01,
percent.contiguity = 50, report.name = 'R.report.ps',
na.sub = FALSE, interpolate = TRUE)

Arguments

affy.object

An AffyBatch object containing two or more chips.

my.ErrorImage

A batch of ErrorImages obtained through other programs. The error images must be in a matrix format, in which the first index represents each cell in the matrix and the second index represents the chip number. By default, the program calculates the error images for the batch of chips affy.object as described in Suarez-Farinas M et al., BMC Bioinformatics - 2005. If a batch of error images is provided, the affy.object is also required.

extended.radius

Radius of the median kernel used to identify extended defects on the chip.

compact.quant.bright, compact.quant.dark

Quantiles of the Error Image used to declare outliers. Values bigger than the '(1 - compact.quant.bright)' percentile are bright outliers, while values smaller than the 'compact.quant.dark' percentile are dark outliers. The two quantiles are used to detect compact defects. Set it to 0 to turn compact defect detection off.

compact.size.limit

Minimum size for clusters to be considered defects. If 0, all the clusters identified will be considered defects, if their size is significantly bigger than the one expected by chance (see also compact.pval).

compact.connect

Defines the neighbourhood of a pixel, used to connect outliers into clusters. If 4, the neighbourhood contains the pixels that are adjacent of a pixel of reference, on the vertical or horizontal axis. If 8, the neighbourhood contains all the 8 pixels sorrounding the pixel of reference. If a connectivity of 4 is used, clusters that are connected only through an edge will be considered as separate clusters. In this case, the single clusters could be eliminated because their size does not exceed compact.size.limit or diffuse.size.limit. Therefore, we suggest to use a connectivity of 8.

compact.pval

Threshold for compact defect size. This is the maximum probability accepted to find a cluster of the same size by chance. If 1, a cluster is considered a compact defect if it is bigger than the value of compact.size.limit.

percent.contiguity

Minimum percentage of area density for defects to be considered compact. If 0, every compact defect found will be eliminated before searching for diffuse defects. Though possible, avoid using less than 20; otherwise diffuse defects might not be identified properly.

report.name

Name of the PostScript file in which to save the final report. If report.name is set to "", no report will be written.

na.sub

If TRUE, the intensity values of the input affyBatch that are affected by defects will be changed in NA. If FALSE, the values will be substituted with the median of the intensity values of the other chips.

interpolate

This option is only used if the value of compact.quant.bright or compact.quant.dark is not among those tabulated (density of outliers = 0.01, 0.02, 0.05, 0.10, 0.20, 0.25, 0.30, 0.40; chip size = 534x534, 640x640, 712x712). If TRUE, the cluster size distribution under the null hypothesis of spatially randomly distributed outliers is derived from simulated values through interpolation. If FALSE, the distribution is simulated for the input value of density of outliers (compact.quant.bright/compact.quant.dark) and the specific chip size. The program runs 100.000 simulations by default.

Value

HarshComp is used to detect extended and compact defects only.

AffyBatch object

The input AffyBatch object, whose intensity values corresponding to defected areas are substituted either by NA or by the median of the chip's values (depending on na.sub).

Report

For each AffyBatch analyzed, a report is written as a PostScript file (see also report.name).

Author(s)

Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M. Wittkwosky, Marcelo O. Magnasco mpellegri@berkeley.edu

References

http://asterion.rockefeller.edu/Harshlight/

Harshlight: a "corrective make-up" program for microarray chips, Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M Wittkowski and Marcelo O Magnasco, BMC Bioinformatics 2005 Dec 10; 6(1):294

"Harshlighting" small blemishes on microarrays, Suarez-Farinas M, Haider A, Wittkowski KM., BMC Bioinformatics. 2005 Mar 22;6(1):65.


Harshlight documentation built on Nov. 8, 2020, 4:50 p.m.