Description Usage Arguments Value Examples
createModel
function creates a SVM model from the training data set with the selected features.
1 2 3 | createModel(data, cl = 1, kernel = "radial", cost = 1, gamma = 1,
valid.times = 10, feature.ranking = NULL, feature.nb = NULL,
file.prefix = NULL)
|
data |
data.frame containing the training set |
cl |
integer indicating the column number corresponding to the response vector that classify positive and negative regions (default = 1) |
kernel |
SVM kernel, a character string: "linear" or "radial". (default = "radial") |
cost |
The SVM cost parameter for both linear and radial kernels. If NULL (default), the function |
gamma |
The SVM gamma parameter for radial kernel. If radial kernel and NULL (default), the function |
valid.times |
Integer indicating how many times the training set will be split for the cross validation step (default = 10). This number must be smaller than positive and negative sets sizes. |
feature.ranking |
List of ordered features. |
feature.nb |
the optimal number of feature to use from the list of ordered features. |
file.prefix |
A character string that will be used as a prefix followed by "_model.RData" for the resulting model file, if it is NULL (default), no model is saved |
the best SVM model
1 2 3 4 5 6 7 8 | data(crm.features)
cost <- 1
gamma <- 1
data(feature.ranking)
feature.nb <- 70
#svm.model <- createModel(data.granges=crm.features, cost=cost, gamma=gamma,
# feature.ranking=feature.ranking, feature.nb=feature.nb)
#feature.weights <- as.data.frame(t(t(svm.model$coefs) %*% svm.model$SV))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.