OutlierD: Outlier detection using quantile regression on the M-A scatterplots of high-throughput data

This package detects outliers using quantile regression on the M-A scatterplots of high-throughput data.

AuthorHyungJun Cho <hj4cho@korea.ac.kr>
Date of publicationNone
MaintainerSukwoo Kim <s4kim@korea.ac.kr>
LicenseGPL (>= 2)
Version1.38.0
http://www.korea.ac.kr/~stat2242/

View on Bioconductor

Files

OutlierD/DESCRIPTION
OutlierD/NAMESPACE
OutlierD/R
OutlierD/R/OutlierD.R
OutlierD/build
OutlierD/build/vignette.rds
OutlierD/data
OutlierD/data/lcms.RData
OutlierD/inst
OutlierD/inst/doc
OutlierD/inst/doc/OutlierD.R
OutlierD/inst/doc/OutlierD.Rnw
OutlierD/inst/doc/OutlierD.pdf
OutlierD/man
OutlierD/man/OutlierD.Rd OutlierD/man/lcms.Rd
OutlierD/vignettes
OutlierD/vignettes/OutlierD.Rnw

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.