Description Usage Arguments Value Examples
Perform risk score prediction on input data. This function requires training data with survival information. The output is the risk scores of patients in testing set.
1 | SCFA.class(dataListTrain, trainLabel, dataListTest, ncores = 10L, seed = NULL)
|
dataListTrain |
List of training data matrices. In each matrix, rows represent samples and columns represent genes/features. |
trainLabel |
Survival information of patient in training set in form of Surv object. |
dataListTest |
List of testing data matrices. In each matrix, rows represent samples and columns represent genes/features. |
ncores |
Number of processor cores to use. |
seed |
Seed for reproducibility, you still need to use set.seed function for full reproducibility. |
A vector of risk score predictions for patient in test set.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | #Load example data (GBM dataset)
data("GBM")
#List of one matrix (microRNA data)
dataList <- GBM$data
#Survival information
survival <- GBM$survival
library(survival)
#Split data to train and test
set.seed(1)
idx <- sample.int(nrow(dataList[[1]]), round(nrow(dataList[[1]])/2) )
survival$Survival <- survival$Survival - min(survival$Survival) + 1 # Survival time must be positive
trainList <- lapply(dataList, function(x) x[idx, ] )
trainSurvival <- Surv(time = survival[idx,]$Survival, event = survival[idx,]$Death)
testList <- lapply(dataList, function(x) x[-idx, ] )
testSurvival <- Surv(time = survival[-idx,]$Survival, event = survival[-idx,]$Death)
#Perform risk prediction
result <- SCFA.class(trainList, trainSurvival, testList, seed = 1, ncores = 2L)
#Validation using concordance index
c.index <- concordance(coxph(testSurvival ~ result))$concordance
print(c.index)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.