pamClass: Classify using Prediction Analysis for MicroArrays

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/pam.R

Description

Classify using the Prediction Analysis for MicroArrays (PAM) algorithm as implemented in the pamr package

Usage

1
pamClass(object, groups, probe2gene = TRUE)

Arguments

object

object containing the expression measurements; currently the only method supported is one for ExpressionSet objects

groups

character string indicating the column containing the class membership

probe2gene

logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if FALSE no such translation is conducted

Value

object of class pamClass

Author(s)

Willem Talloen

References

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (1999). Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99: 6567-6572. Available at www.pnas.org

Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays, Chapman \& Hall/CRC, p. 221.

See Also

pamr.train

Examples

1
2
3
4
5
6
7
8
9
if(require(ALL)){
 data(ALL, package = "ALL")
 ALL <- addGeneInfo(ALL)
 ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
 resultPam <- pamClass(object = ALL, groups = "BTtype")
 plot(resultPam)
 topTable(resultPam, n = 5)
 confusionMatrix(resultPam)
}

a4Classif documentation built on Nov. 8, 2020, 6:55 p.m.